×

Bedingungen für die Existenz oszillatorischer Lösungen der Gleichung \(x''' +a(t)x''+b(t)x'+c(t)x=0\), \(c(t)\geq 0\). (German) Zbl 0316.34031


MSC:

34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
34A30 Linear ordinary differential equations and systems
PDF BibTeX XML Cite
Full Text: EuDML

References:

[1] GERA M.: Über einige Eigenschaften der Lösungen der Gleichung x”’ + a(t)x” + b(t)x’ + c(t)x = 0, c(t) \geq 0. Mat. Čas., 24, 1974, 357-370. · Zbl 0324.34026
[2] LAZER A. C.: The behavior of solutions of the differential equation y” + p(x)y’ + q(x)y = 0. Pac. J. Math., 17, 1966, 435-466. · Zbl 0143.31501
[3] HANAN M.: Oscillation criteria for third-order linear differential equations. Pac. J. Math., 11, 1961, 919-944. · Zbl 0104.30901
[4] CAHCOHE, Дж.: Обыкновенные дифференциальные уравнения. T. 1. Москва 1953 · Zbl 1151.94459
[5] GREGUŠ M.: Über die lineare homogene Differentialgleichung dritter Ordnung. Wiss. Z. Univ. Halle, Math.-Nat., XII/3, 1963, 265-268. · Zbl 0118.30501
[6] GREGUŠ M.: O oscilatoričnosti riešení diferenciálnej rovnice tretieho rádu. Sborník družby pěti bratrských universit Kyjev, Krakov, Debrecín, Bratislava, Brno 1966, 146-150.
[7] RÁB M.: Oscilační vlastnosti integrálů diferenciální rovnice 3. řádu. Práce Brněnské základny Českoslov. akad. věd XXVII, 1955, 349-360.
[8] ZLÁMAL M.: Asymptotic properties of the solutions of the third order linear differential equations. Publ. Fac. Sci. Univ. Masaryk, 1951/6, č. 329, 159-167.
[9] DOLAN J. M.: On the relationship between the oscillatory behavior of a linear third-order differential equation and its adjoint. J. diff. Eqs., 7, 1970, 367-388. · Zbl 0191.10001
[10] ХАРТМАН Ф.: Обыкновенные дифференциальные уравнения. Москва 1970
[11] RÁB M.: Kriterien für die Oszillation der Lösungen der Differentialgleichung [p(x)y’Y]’ + q(x)y = 0. Časop. pěstov. mat., 84, 1959, 335-370. · Zbl 0087.29505
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.