×

Oscillation criteria for second order nonlinear delay inequalities. (English) Zbl 0321.34057


MSC:

34K99 Functional-differential equations (including equations with delayed, advanced or state-dependent argument)
34C10 Oscillation theory, zeros, disconjugacy and comparison theory for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI EuDML

References:

[1] Erbe, Canad. Math. Bull. 16 pp 49– (1973) · Zbl 0272.34095 · doi:10.4153/CMB-1973-011-1
[2] El’sgol’ts, Introduction to the theory of differential equations with deviating arguments (1966)
[3] DOI: 10.1016/0022-0396(70)90013-6 · Zbl 0212.12102 · doi:10.1016/0022-0396(70)90013-6
[4] Belohorec, Mat.-Fyz. Časopis Sloven. Akad. Vied. 11 pp 250– (1961)
[5] Wong, Ordinary differential equations pp 581– (1971)
[6] DOI: 10.1016/0022-247X(69)90161-9 · Zbl 0169.11401 · doi:10.1016/0022-247X(69)90161-9
[7] Waltman, Canad. Math. Bull. 11 pp 593– (1968) · Zbl 0186.42205 · doi:10.4153/CMB-1968-071-2
[8] Норкин, Differential equations of the second order with retarded argument. Some problems of the theory of vibrations of systems with retardation (1972)
[9] DOI: 10.1016/0022-0396(69)90114-4 · Zbl 0174.39804 · doi:10.1016/0022-0396(69)90114-4
[10] DOI: 10.1016/0022-0396(71)90052-0 · doi:10.1016/0022-0396(71)90052-0
[11] Staïkos, Bull. Soc. Math. Grèce 11 pp 1– (1970)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.