Elkik, Renée Solutions d’équations à coefficients dans un anneau hensélien. (French) Zbl 0327.14001 Ann. Sci. Éc. Norm. Supér. (4) 6, 553-603 (1973). Reviewer: H. Kurke Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 ReviewsCited in 112 Documents MSC: 14A15 Schemes and morphisms 14A05 Relevant commutative algebra 13J15 Henselian rings Citations:Zbl 0167.49503; Zbl 0177.49003 PDF BibTeX XML Cite \textit{R. Elkik}, Ann. Sci. Éc. Norm. Supér. (4) 6, 553--603 (1973; Zbl 0327.14001) Full Text: DOI Numdam Numdam EuDML OpenURL References: [1] M. ARTIN , Algebraic approximation of structures over complete local rings , Publication I. H. E. S., n^\circ 36. Numdam | Zbl 0181.48802 · Zbl 0181.48802 [2] M. ARTIN , Algebrisation of formal moduli I (Ann. of Math., vol. 91, 1970 , p. 88-135). MR 41 #5370 | Zbl 0177.49003 · Zbl 0177.49003 [3] J. BOUTOT , Groupe de Picard local d’un anneau hensélien (C. R. Acad. Sc. Paris, t. 272, série A, 1971 , p. 1248-1250). MR 44 #217 | Zbl 0222.13022 · Zbl 0222.13022 [4] FERRAND et RAYNAUD , Fibres formelles d’un anneau local noethérien (Ann. scient. Éc. Norm. Sup., 4e série, t. 3, 1970 , p. 295-312). Numdam | MR 42 #7660 | Zbl 0204.36601 · Zbl 0204.36601 [5] H. HIRONAKA , Formal line bundles along exceptional loci (Algebraic Geometry, Bombay colloquium, 1968 , p. 201-218). MR 41 #6859 | Zbl 0205.24802 · Zbl 0205.24802 [6] L. ILLUSIE , Complexe cotangent I (Springer Lecture Notes, n^\circ 239). MR 58 #10886a | Zbl 0224.13014 · Zbl 0224.13014 [7] M. RAYNAUD , Anneaux locaux henséliens (Springer Lecture Notes, n^\circ 189). Zbl 0203.05102 · Zbl 0203.05102 [8] D. S. RIM , S. G. A. VII, Exp. VI. Publication I. H. E. S., vol. 340. [9] M. SCHLESSINGER , Functor of Artin Rings (Trans. Amer. Math. Soc., vol. 130, 1968 , p. 208-222). MR 36 #184 | Zbl 0167.49503 · Zbl 0167.49503 [10] J.-C. TOUGERON , Idéaux de fonctions différentiables (Thèse, Rennes, 1967 ). · Zbl 0188.45102 [11] MONSKY et WASHNITZER , Formal Cohomology I (Annals of Math., vol. 88, 1968 , p. 181-217). MR 40 #1395 | Zbl 0162.52504 · Zbl 0162.52504 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.