Apostol, Tom M. Introduction to analytic number theory. (English) Zbl 0335.10001 Undergraduate Texts in Mathematics. New York-Heidelberg-Berlin: Springer-Verlag. xii, 338 p. DM 36.20; $14.80 (1976). Das vorliegende Buch gibt eine gründliche und vorbildlich dargestellte Einführung in die elementare Zahlentheorie. Dem Titel „Einführung in die analytische Zahlentheorie“ wird es nicht voll gerecht, da es nur in den Kapiteln 11, 12 und 13 Methoden vermittelt, die man zur analytischen Zahlentheorie zählen darf. Ein zweiter Band mit dem Titel „Modular functions and Dirichlet series in Number Theory“ ist in der Reihe Graduate Texts in Mathematics. Vol. 41, Springer Verlag 1976 erschienen (vgl. die Besprechung im Zbl 0332.10017). Im einzelnen bietet das Buch: Nach einer historischen Einührung im Chapter 1 elementare Teilbarkeitslehre. Ch. 2. Zahlentheoretische Funktionen. Hierbei wird Wert auf das Faltprodukt gelegt. Ch. 3. Mittelwerte zahlentheoretischer Funktionen. Ch. 4. Elementare Primzahltheorie einschließlich der Tschebytschevschen Formeln. Letztere werden mit Hilfe eines Tauber-Satzes von Shapiro hergeleitet. Ch. 5. Kongruenzen. Ch. 6. Charaktere auf endlichen abelschen Gruppen. Ch. 7. Der Satz von Dirichlet über Primzahlen in Progressionen. Ch. 8. Ramanujan- und Gauß-Summen. Pólya’s Ungleichung für Charaktersummen. Ch. 9. Quadratische Kongruenzen. Ch. 10. Primitivwurzeln. Ch. 11. Dirichlet-Reihen. Ch. 12. \(\zeta\)-Funktion und \(L\)-Reihen mit dem Beweis der Funktionalgleichungen. Ch. 13. Ein Beweis des Primzahlsatzes mit Hilfe des Riemann-Lebesgue-Lemmas. Ch. 14. Partitionen. Jedes Kapitel enthält eine große Anzahl von Übungsaufgaben. Das Buch gibt eine ausgezeichnete, auf langer Erfahrung aufbauende Einführung in die elementare Zahlentheorie mit einem Ausblick auf Methoden der analytischen Primzahltheorie. In diesem Sinn ist es jedem an der Zahlentheorie interessierten Studenten zu empfehlen. Reviewer: Dieter Wolke (Freiburg i. Br.) Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 13 ReviewsCited in 1149 Documents MSC: 11-01 Introductory exposition (textbooks, tutorial papers, etc.) pertaining to number theory 11Axx Elementary number theory 11Mxx Zeta and \(L\)-functions: analytic theory 11Lxx Exponential sums and character sums 11A25 Arithmetic functions; related numbers; inversion formulas 11N37 Asymptotic results on arithmetic functions Citations:Zbl 0332.10017 × Cite Format Result Cite Review PDF Digital Library of Mathematical Functions: §24.13(i) Bernoulli Polynomials ‣ §24.13 Integrals ‣ Properties ‣ Chapter 24 Bernoulli and Euler Polynomials §24.17(iii) Number Theory ‣ §24.17 Mathematical Applications ‣ Applications ‣ Chapter 24 Bernoulli and Euler Polynomials §24.5(ii) Other Identities ‣ §24.5 Recurrence Relations ‣ Properties ‣ Chapter 24 Bernoulli and Euler Polynomials §24.8(i) Fourier Series ‣ §24.8 Series Expansions ‣ Properties ‣ Chapter 24 Bernoulli and Euler Polynomials In §25.11(v) Special Values ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.11(v) Special Values ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.11(v) Special Values ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.11(i) Definition ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.11(vii) Integral Representations ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.11(i) Definition ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.11(iii) Representations by the Euler–Maclaurin Formula ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.11(iv) Series Representations ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions §25.11(iv) Series Representations ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions §25.11(vii) Integral Representations ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions §25.11(x) Further Series Representations ‣ §25.11 Hurwitz Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.13 Periodic Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.13 Periodic Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.13 Periodic Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions §25.13 Periodic Zeta Function ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.15(ii) Zeros ‣ §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.15(i) Definitions and Basic Properties ‣ §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.15(i) Definitions and Basic Properties ‣ §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.15(i) Definitions and Basic Properties ‣ §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.15(i) Definitions and Basic Properties ‣ §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.15(i) Definitions and Basic Properties ‣ §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.15(i) Definitions and Basic Properties ‣ §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.15(ii) Zeros ‣ §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions §25.15(i) Definitions and Basic Properties ‣ §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions §25.15 Dirichlet 𝐿-functions ‣ Related Functions ‣ Chapter 25 Zeta and Related Functions In §25.16(i) Distribution of Primes ‣ §25.16 Mathematical Applications ‣ Applications ‣ Chapter 25 Zeta and Related Functions In §25.16(i) Distribution of Primes ‣ §25.16 Mathematical Applications ‣ Applications ‣ Chapter 25 Zeta and Related Functions §25.16(i) Distribution of Primes ‣ §25.16 Mathematical Applications ‣ Applications ‣ Chapter 25 Zeta and Related Functions §25.16 Mathematical Applications ‣ Applications ‣ Chapter 25 Zeta and Related Functions In §25.2(iv) Infinite Products ‣ §25.2 Definition and Expansions ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.2(i) Definition ‣ §25.2 Definition and Expansions ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.2(ii) Other Infinite Series ‣ §25.2 Definition and Expansions ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.2(ii) Other Infinite Series ‣ §25.2 Definition and Expansions ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.2(ii) Other Infinite Series ‣ §25.2 Definition and Expansions ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.2(iii) Representations by the Euler–Maclaurin Formula ‣ §25.2 Definition and Expansions ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions §25.2(i) Definition ‣ §25.2 Definition and Expansions ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions §25.2 Definition and Expansions ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions §25.2(iv) Infinite Products ‣ §25.2 Definition and Expansions ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.4 Reflection Formulas ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.4 Reflection Formulas ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.4 Reflection Formulas ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.4 Reflection Formulas ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions §25.4 Reflection Formulas ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.5(iii) Contour Integrals ‣ §25.5 Integral Representations ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions §25.5(iii) Contour Integrals ‣ §25.5 Integral Representations ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions §25.5(i) In Terms of Elementary Functions ‣ §25.5 Integral Representations ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.6(i) Function Values ‣ §25.6 Integer Arguments ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.6(i) Function Values ‣ §25.6 Integer Arguments ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions In §25.6(i) Function Values ‣ §25.6 Integer Arguments ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions §25.6(i) Function Values ‣ §25.6 Integer Arguments ‣ Riemann Zeta Function ‣ Chapter 25 Zeta and Related Functions Chapter 25 Zeta and Related Functions §27.10 Periodic Number-Theoretic Functions ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory §27.11 Asymptotic Formulas: Partial Sums ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory §27.13(iii) Waring’s Problem ‣ §27.13 Functions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory §27.13(i) Introduction ‣ §27.13 Functions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory §27.13(iv) Representation by Squares ‣ §27.13 Functions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory §27.14(ii) Generating Functions and Recursions ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory §27.14(i) Partition Functions ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory §27.14(v) Divisibility Properties ‣ §27.14 Unrestricted Partitions ‣ Additive Number Theory ‣ Chapter 27 Functions of Number Theory §27.2(i) Definitions ‣ §27.2 Functions ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory §27.3 Multiplicative Properties ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory §27.4 Euler Products and Dirichlet Series ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory §27.5 Inversion Formulas ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory §27.5 Inversion Formulas ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory §27.6 Divisor Sums ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory §27.8 Dirichlet Characters ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory §27.9 Quadratic Characters ‣ Multiplicative Number Theory ‣ Chapter 27 Functions of Number Theory Chapter 27 Functions of Number Theory Online Encyclopedia of Integer Sequences: Number of coprime pairs (a,b) with -n <= a,b <= n. Apostol’s second order Möbius (or Moebius) function mu_2(n). Apostol’s third-order Möbius function mu_3(n). Apostol’s fourth-order Mobius (Moebius) function mu_4(n). a(n) gives the number of representative parallel primitive forms for binary quadratic forms of discriminant Disc(n) = 9*m(n)^2 - 4 and representation of -m(n)^2, with m(n) = A002559(n) (Markoff numbers). a(n) is the maximum number of dots on the slope of a Ferrers diagram of a partition of n into distinct parts.