×

Minimizing maximum lateness on one machine: Computational experience and some applications. (English) Zbl 0336.90029


MSC:

90B35 Deterministic scheduling theory in operations research
68Q45 Formal languages and automata
68W99 Algorithms in computer science
68N01 General topics in the theory of software
68Q25 Analysis of algorithms and problem complexity
65K05 Numerical mathematical programming methods
90C10 Integer programming
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] DOI: 10.1002/nav.3800210112 · Zbl 0277.90044 · doi:10.1002/nav.3800210112
[2] DOI: 10.1002/nav.3800200106 · Zbl 0256.90027 · doi:10.1002/nav.3800200106
[3] Charlton J. M., Operations Res. 18 pp 689– (1970)
[4] Charlton J. M., Operational Res. Quart. 21 pp 127– (1970)
[5] Conway R. W., Theory of Scheduling (1967) · Zbl 1058.90500
[6] Dessouky M. I., AIIE Trans. 4 pp 214– (1972) · doi:10.1080/05695557208974852
[7] Edmonds J., Canad. J. Math. 17 pp 449– (1965) · Zbl 0132.20903 · doi:10.4153/CJM-1965-045-4
[8] Florian M., Management Sci. 17 pp B782– (1971) · doi:10.1287/mnsc.17.12.B782
[9] Giffler B., Operations Res. 8 pp 487– (1960)
[10] DOI: 10.1002/nav.3800210113 · Zbl 0276.90024 · doi:10.1002/nav.3800210113
[11] Jackson J. R., Scheduling a production line to minimize maximum tardiness (1955)
[12] DOI: 10.1002/nav.3800010110 · Zbl 1349.90359 · doi:10.1002/nav.3800010110
[13] Lawler E. L., Management Sci. 19 pp 544– (1973)
[14] 14. J. K. Lenstra, A. H. G. RinnooyKan, and P. Brucker(1975 ), Complexity of machine scheduling problems . Ann. Discrete Math.,to appear.
[15] Lenstra J. K., Towards a better algorithm for the job-shop scheduling problem - I. Report BN 22 (1973)
[16] Lenstra J. K., A recursive approach to the generation of combinatorial configurations (1975)
[17] McMahon G., Operations Res. 23 pp 475– (1975)
[18] Rinnooy Kan A. H. G., Machine Scheduling Problems: Classification. Complexity and Computations (1976)
[19] Roy B., Les problemes d’ordonnancement avec contraintes disjonctives. Note DS no. 9 bis (1964)
[20] 20. L. Schrage(1971 ), Obtaining optimal solutions to resource constrained network scheduling problems. Unpublished manuscript.
[21] DOI: 10.1002/nav.3800030106 · doi:10.1002/nav.3800030106
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.