On the existence, uniqueness and approximation of saddle-point problems arising from Lagrangian multipliers. (English) Zbl 0338.90047


90C30 Nonlinear programming
49K35 Optimality conditions for minimax problems
Full Text: EuDML


[1] J. P. AUBIN, Approximation of elliptic boundary-value problems, Wiley-New York (1972), Zbl0248.65063 MR478662 · Zbl 0248.65063
[2] J. P. AUBIN, Cours d’optimisation, Université de Paris IX, Dauphine (1973-74).
[3] I. BABUSKA, Error boundfor the finite element method, Num. Math., 16,322-333, (1971). Zbl0214.42001 MR288971 · Zbl 0214.42001
[4] I. BABUSKA, The finite element method with Lagrangian multipliers, Num. Math.,20, 179-192 (1973). Zbl0258.65108 MR359352 · Zbl 0258.65108
[5] F. BREZZI, Sur la méthode des éléments finis hybrides pour le problème biharmonique (submitted to Num. Math). Zbl0316.65029 · Zbl 0316.65029
[6] F. BREZZI, Sur une méthode hybride pour l’approximation du problème de la torsion d’une barre élastique (to appear on Ist. Lombardo Accad. Sci Lett. Rend. A). Zbl0351.73081 MR378556 · Zbl 0351.73081
[7] F. BREZZI, Sur l’existence, unicité, et approximation numérique de problèmes de point de selle, C. R. Acad. Sc. Paris, Série A, 278 (18 mars 1974), 839-842, (1974). Zbl0301.65031 MR338867 · Zbl 0301.65031
[8] F. BREZZI and L. D. MARINI, On the numerical solution ofplate bending problems by hybrid methods (to appear on Pubblicazioni del Laboratório di Analisi Numerical del C.N.R., Pavia). · Zbl 0322.73048
[9] P. G. CIARLET and P. A. RAVIART, General Lagrange and Hermite interpolation in Rn with applications to finite element methods, Arch. Rat. Mech. Anal., 46.177-199 (1972). Zbl0243.41004 MR336957 · Zbl 0243.41004
[10] P. G. CIARLET and P. A. RAVIART, The combined effect of curved boundaries and numerical integration in isoparametric finite element methods. The Math. Found, of the F. E. M. (éd. by A. K. Aziz), Academic Press 1972. Zbl0262.65070 MR421108 · Zbl 0262.65070
[11] M. CROUZEIX and P. A. RAVIART, Conforming and Nonconforming Finite Element methods for Solving the Stationary Stokes Equations. I RAIRO, V-3, déc. 1973. Zbl0302.65087 MR343661 · Zbl 0302.65087
[12] B. FRAEUS DE VEUBEKE, Upper and lower bounds in matrix structural analysis, AGARDograph 72, Pergamon, 1964. · Zbl 0131.22903
[13] B. FRAEUS DE VEUBEKE, Displacements and equilibrium models in the finite element method, Stress Analysis (éd. by O. C. Zienkiewicz and G. S. Holister), chap. p, Wiley, 1964.
[14] B. FRAEUS DE VEUBEKE, Bending and Stretching of plates, Proc. Conf. Matrix Method in Structural Mech., Air Force Technical Report AFF DL-TR-66-80, Nov. 1966.
[15] B. FRAEUS DE VEUBEKE, Variational principles and the patch-test (to appear on Int. J. for Numerical Meth. in Eng.). Zbl0284.73043 · Zbl 0284.73043
[16] B. FRAEUS DE VEUBEKE and O. C. ZIENKIEWICZ, Strain energy bounds in finite element analysis by slab analogy, Journal of Strain Analysis 2, 4, 265-271 (1967).
[17] B. M. IRONS and A. RAZZAQUE, Experience with patch-test for convergence of finite elements, The Math. Found of the F. E. M. (ed. by A. K. Aziz). Academic Press, 1972. Zbl0279.65087 MR423839 · Zbl 0279.65087
[18] C. JOHNSON, On the convergence of a Mixed Finite Element Method for Plate Bending Problems, Num. Math., 21, 43-62 (1973). Zbl0264.65070 MR388807 · Zbl 0264.65070
[19] C. JOHNSON, Convergence of another mixed finite-element method for plate bending problems, Chalmers Institute of Technology No. 1972-27. Zbl0264.65070 · Zbl 0264.65070
[20] F. KIKUCI and Y. ANDO, On the convergence of a mixed finite element scheme for plate bending, Nucl. Eng. and Design, 24, 357-373 (1973).
[21] LASCAUX and P. LESAINT (to appear). MR341902
[22] J. L. LIONS and E. MAGENES, Non homogeneous boundary value problems and applications, vol. 1, 2, Grundlehren B. 181,182, Springer, 1971. Zbl0227.35001 · Zbl 0227.35001
[23] B. MERCIER, Numerical solution of the biharmonic problem by mixed finite elements of class C^\circ (to appear in Boll. U.M.I. (1974)). Zbl0332.65058 MR378442 · Zbl 0332.65058
[24] T.H.H. PIAN and P. TONG, variational principle and the convergence of a finite-element method based on assumed stresses distribution, Inst. J. Solid Structures, 5, 463-472 (1969). Zbl0167.52805 · Zbl 0167.52805
[25] T.H. H. PIAN and P. TONG, Basis of finite element methods for solid continua, Int. J. for Numerical Meth. in Eng. 1, 3-28 (1969). Zbl0252.73052 · Zbl 0252.73052
[26] P.A. RAVIART, Méthode des éléments finis, Cours 1972-73 à l’Université de ParisVI.
[27] P. A. RAVIART and J. M. THOMAS, (to appear).
[28] G. SANDER, Application of the dual analysis principle, Proceedings of IUTAM, Liège, Aug. 1970.
[29] G. SANDER, Application de la méthode des éléments finis à la flexion des plaques, Coll. Publ. Fac. Sc. Appl. Univ., Liège n. 15 (1969).
[30] G. STRANG, Variational crimes in the finite element methods, The Math. Found.of the F.E.M. (ed. by A. K. Aziz) Academic Press (1972). Zbl0264.65068 MR413554 · Zbl 0264.65068
[31] G. STRANG and G. Fix, An analysis of the finite éléments rnethod, Prentice Hall- New York, 1973. Zbl0356.65096 MR443377 · Zbl 0356.65096
[32] J. M. THOMAS, (to appear).
[33] K. YOSIDA, Functional Analysis, Grundlehren B. 123, Springer, 1965 . Zbl0435.46002 · Zbl 0435.46002
[34] O. C. ZIENKIEWICZ, The finite element methods in engineering science McGraw-Hill (1971). Zbl0237.73071 MR315970 · Zbl 0237.73071
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.