×

Bifurcation and asymptotic bifurcation for non-compact non-symmetric gradient operators. (English) Zbl 0341.47042


MSC:

47J05 Equations involving nonlinear operators (general)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Krasnosel’skii, Topological methods in the theory of nonlinear integral equations (1964)
[2] DOI: 10.1112/plms/s3-27.3.531 · Zbl 0268.47064 · doi:10.1112/plms/s3-27.3.531
[3] DOI: 10.1016/0022-1236(71)90030-9 · Zbl 0212.16504 · doi:10.1016/0022-1236(71)90030-9
[4] DOI: 10.1112/plms/s3-23.4.699 · Zbl 0227.47050 · doi:10.1112/plms/s3-23.4.699
[5] DOI: 10.1007/BF01112603 · Zbl 0254.47082 · doi:10.1007/BF01112603
[6] Vainberg, Variational methods for the study of nonlinear operators (1964)
[7] DOI: 10.1093/qmath/24.1.241 · Zbl 0256.47049 · doi:10.1093/qmath/24.1.241
[8] DOI: 10.1017/S001309150002616X · Zbl 0248.47024 · doi:10.1017/S001309150002616X
[9] Berger, Bifurcation theory and nonlinear eigenvalue problems (1969)
[10] Browder, Functional analysis and related fields (1970) · Zbl 0211.00102
[11] DOI: 10.1080/00036817108839013 · Zbl 0235.47035 · doi:10.1080/00036817108839013
[12] Toland, Proc. Conf. Ordinary and Partial Differential Equations, Dundee 1974 pp 429– (1974)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.