×

The Cauchy problem for quasi-linear symmetric hyperbolic systems. (English) Zbl 0343.35056


MSC:

35L60 First-order nonlinear hyperbolic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
35L45 Initial value problems for first-order hyperbolic systems
35B45 A priori estimates in context of PDEs
46E40 Spaces of vector- and operator-valued functions
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Kato, T., Linear evolution equations of ?hyperbolic? type. J. Fac. Sci. Univ. Tokyo 17, 241-258 (1970). · Zbl 0222.47011
[2] Kato, T., Linear evolution equations of ?hyperbolic type?, II. J. Math. Soc. Japan 25, 648-666 (1973). · Zbl 0262.34048
[3] Friedrichs, K.O., Symmetric hyperbolic linear differential equations. Comm. Pure Appl. Math. 7, 345-392 (1954). · Zbl 0059.08902
[4] Sobolev, S.L., Applications of functional analysis in mathematical physics. AMS Translations of Math. Monographs. 7, 1963. · Zbl 0123.09003
[5] Fischer, A.E., & J.E. Marsden, The Einstein evolution equations as a first-order quasi-linear symmetric hyperbolic systems, I. Commun. Math. Phys. 28, 1-38 (1972). · Zbl 0247.35082
[6] Bers, L., F. John, & M. Schechter, Partial Differential Equations. Interscience 1964. · Zbl 0126.00207
[7] Kallman, R.R., & G.-C. Rota, On the inequality ?f??2 ? 4 ?f? ?f??. Inequalities, Vol. 2, pp. 187-192. Academic Press 1970. · Zbl 0222.47009
[8] Hormander, L., Linear partial differential operators. Springer 1963.
[9] Massey, F.J. III, Abstract evolution equations and the mixed problem for symmetric hyperbolic systems, Trans. Amer. Math. Soc. 168, 165-188 (1972). · Zbl 0239.35062
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.