×

Relations between \(K_2\) and Galois cohomology. (English) Zbl 0359.12011


MSC:

11R70 \(K\)-theory of global fields
11R34 Galois cohomology
12G05 Galois cohomology
19F15 Symbols and arithmetic (\(K\)-theoretic aspects)
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Bass, H.:K 2 of global fields. AMS taped lecture, Cambridge, Mass., Oct. 1969
[2] Bass, H.:K 2 des corps, globaux. Seminaire Bourbaki, no. 394, Juin 1971
[3] Bass, H., Tate, J.: The Milnor ring of a global field. In: AlgebraicK-Theory II. Lecture Notes in Math. no. 342. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0299.12013
[4] Candiotti, A.: Computations of Iwasawa invariants andK 2. Compositio Math.29, 89-111 (1974) · Zbl 0364.12003
[5] Candiotti, A., Kramer, K.: OnK 2 and Z1-extensions of number fields (preprint) · Zbl 0388.12004
[6] Carroll, J.: On a relationship between the 2-primary part of the tame kernel and Z2-extensions for complex quadratic fields (preprint)
[7] Cassels, J.W.S., Fröhlich, A.: Algebraic number theory. London-New York: Academic Press 1967 · Zbl 0153.07403
[8] Chase, S.U., Waterhouse, W.C.: Moore’s theorem on uniqueness of reciprocity laws. Inventiones math.16, 267-270 (1972) · Zbl 0245.12009
[9] Coates, J.: OnK 2 and some classical conjectures in algebraic number theory. Annals of Math.95, 99-116 (1972) · Zbl 0245.12005
[10] Coates, J., Lichtenbaum, S.: Onl-adic zeta functions. Annals of Math.98, 498-550 (1973) · Zbl 0279.12005
[11] Elman, R., Lam, T.Y.: On the quaternion symbol homomorphism gf:k 2 F?B(F). In: AlgebraicK-theory II. Lecture Notes in Math.342, 447-463 (1973) Berlin-Heidelberg-New York: Springer 1973
[12] Garland, H.: A finiteness theorem forK 2 of a number field. Annals of Math.94, 534-548 (1971) · Zbl 0247.12103
[13] Iwasawa, K.: OnZ 1 -extensions of algebraic number fields. Annals of Math.98, 246-326 (1973) · Zbl 0285.12008
[14] Lichtenbaum, S.: On the values of zeta andL-functions: I Annals of Math.96, 338-360 (1972) · Zbl 0251.12002
[15] Lichtenbaum, S.: Values of zeta-functions, étale cohomology, and algebraicK-theory In: AlgebraicK-theory II. Lecture Notes in Math.342, 489-501. Berlin-Heidelberg-New York: Springer 1973
[16] Milnor, J.: AlgebraicK-theory and quadratic forms. Inventiones math9, 318-344 (1970) · Zbl 0199.55501
[17] Milnor, J.: Introduction to algebraicK-theory. Annals of Math. Study 72. Princeton: Princeton University Press 1971 · Zbl 0237.18005
[18] Moore, C.: Group extensions ofp-adic and adelic linear groups. Publ. Math. I.H.E.S.,35, 5-74, (1969)
[19] Quillen, D.: Higher algebraicK-theory I. In: AlgebraicK-Theory I. Lecture Notes in Math.341, 85-147. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0292.18004
[20] Quillen, D.: Finite generation of the groupsK i of algebraic integers. In: AlgebraicK-theory I. Lecture Notes in Math.341, 179-198, Berlin-Heidelberg-New York: Springer
[21] Serre, J.-P.: Corps locaux, 2 d Éd. Paris: Hermann 1968
[22] Serre, J.-P.: Cohomologie Galoisienne. Lecture Notes in Math.5, Berlin-Heidelberg-New York: Springer 1964 · Zbl 0143.05901
[23] Serre, J.-P.: A Course in arithmetic. Graduate Text in Math.7 (Cours d’Arithmetique), Paris: Press. Univ. de France. 1970). Berlin-Heidelberg-New York: Springer 1973
[24] Tate, J.: Symbols in arithmetic. Actes. Congrès intern. math. 1970, Tome 1, p. 201 a 211.
[25] Tate, J.: Letter to Iwasawa. In: AlgebraicK-theory II. Lecture Notes in Math.342, 524-527 Berlin-Heidelberg-New York: Springer 1973
[26] Weil, A.: Basic number theory. Berlin-Heidelberg-New York: Springer 1973 · Zbl 0267.12001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.