Représentations approchees d’un groupe dans une algèbre de Banach. (French) Zbl 0371.22007


22D12 Other representations of locally compact groups
22C05 Compact groups
Full Text: DOI EuDML


[1] BERG I.D.: ?On approximation of normal operators by weighted shifts?. Michigan Math. J.21 377-383 (1974). Voir aussi ?Index theory for perturbations of direct sums of normal operators and weighted shifts?, à paraitre. · Zbl 0303.47022
[2] BONSALL F.F. et DUNCAN J.: ?Complete normed algebras?. Springer 1973. · Zbl 0271.46039
[3] BOURBAKI N.: ?Intègration, chapitres I à IV, 2è édition?. Hermann 1965.
[4] BROWN L.G., DOUGLAS R.G. et FILLMORE P.A.: ?Unitary equivalence modulo the compact operators and extensions of C*-algebras?. Springer Lecture Notes in Mathematics 345 (1973) 58-128. · Zbl 0277.46053 · doi:10.1007/BFb0058917
[5] DIXMIER J.: ?Les C*-algèbres et leurs représentations (2è édition)?. Gauthier-Villars 1969.
[6] De La HARPE P. et KAROUBI M.: ?Perturbations compactes des représentations d’un groupe dans un espace de Hilbert, I?. Bull. Soc. math. France, Mémoire 46, 1976, 41-65 · Zbl 0331.46051
[7] KALLMAN R.R.: A characterization of uniformly continuous representations of connected locally compact groups. Michigan Math. J. 16 (1969) 257-263. · Zbl 0182.18102 · doi:10.1307/mmj/1029000269
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.