On accuracy and unconditional stability of linear multistep methods for second order differential equations. (English) Zbl 0378.65043


65L05 Numerical methods for initial value problems involving ordinary differential equations
Full Text: DOI


[1] G. Dahlquist,A special stability problem for linear multistep methods, BIT 3 (1963), 27–43. · Zbl 0123.11703 · doi:10.1007/BF01963532
[2] G. Dahlquist,On the relation of G-stability to other stability concepts for linear multistep methods, inTopics in Numerical Analysis III, ed. J. J. H. Miller, Academic Press, 1977. · Zbl 0438.65073
[3] A. Dinghas,Vorlesungen über Funktionentheorie, Springer Verlag, 1961. · Zbl 0102.29301
[4] Y. Genin,A new approach to the synthesis of stiffly stable linear multistep methods, IEEE Trans. on Circuit Theory, 20 (1973), 352–360. · doi:10.1109/TCT.1973.1083700
[5] R. D. Grigorieff,Numerik gewöhnlicher Differentialgleichungen, vol. 2, Teubner Verlag, 1977.
[6] J. Lambert and I. A. Watson,Symmetric multistep methods for periodic initial value problems, J. Inst. Maths. Applics. 18 (1976), 189–202. · Zbl 0359.65060 · doi:10.1093/imamat/18.2.189
[7] R. Richtmyer and K. W. Morton,Difference Methods for Initial-Value Problems, 2nd ed., Interscience Publishers, 1967. · Zbl 0155.47502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.