Rosenblatt, M. Some limit theorems for partial sums of quadratic forms in stationary Gaussian variables. (English) Zbl 0388.60048 Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 125-132 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 25 Documents MSC: 60G50 Sums of independent random variables; random walks 60F99 Limit theorems in probability theory PDFBibTeX XMLCite \textit{M. Rosenblatt}, Z. Wahrscheinlichkeitstheor. Verw. Geb. 49, 125--132 (1979; Zbl 0388.60048) Full Text: DOI References: [1] Dobrushin, R. L., Gaussian and their subordinated self-similar random generalized fields, Ann. Probability, 7, 1-28 (1979) · Zbl 0392.60039 [2] Ibragimov, I. A.; Linnik, Yu. V., Independent and Stationary Sequences of Random Variables (1971), Gröningen: Walters-Noordhoff, Gröningen · Zbl 0219.60027 [3] Rosenblatt, M.: Independence and dependence. Proc. 4th Berkeley Sympos. Math. Statist. Probab., 431-443. Univ. Calif. (1961) · Zbl 0105.11802 [4] Rosenblatt, M., Fractional integrals of stationary processes and the central limit theorem, J. Appl. Probability, 13, 723-732 (1976) · Zbl 0354.60010 [5] Sun, T. C., Some further results on central limit theorems for non-linear functions of a normal stationary process, J. Math. Mech., 14, 71-85 (1965) · Zbl 0138.10803 [6] Taqqu, M. S., Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 31, 287-302 (1975) · Zbl 0303.60033 [7] Taqqu, M. S., Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrscheinlichkeitstheorie verw, Gebiete, 40, 203-238 (1977) · Zbl 0358.60048 [8] Taqqu, M.S.: A representation for self-similar processes, manuscript · Zbl 0373.60048 [9] Zygmund, A., Trigonometric Series (1968), Cambridge: Cambridge University Press, Cambridge · JFM 58.0280.01 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.