Global moduli for surfaces of general type. (English) Zbl 0389.14006


14J10 Families, moduli, classification: algebraic theory
14D20 Algebraic moduli problems, moduli of vector bundles
14L24 Geometric invariant theory
32G13 Complex-analytic moduli problems
Full Text: DOI EuDML


[1] B. Bombieri, E.: Canonical models of surfaces of general type. Publ. IHES No. 42, 1973 · Zbl 0259.14005
[2] M1. Mumford, D.: Lectures on curves on an algebraic surface. Princeton Univ. Press 1966
[3] M2. Mumford, D.: Pathologies III. Am. J. Math.89, (1967) · Zbl 0146.42403
[4] M3. Mumford, D.: The canonical ring of an algebraic surface. Ann. Math.76, 612-615, (1962)
[5] M4. Mumford, D.: Geometric invariant theory. Berlin-Göttingen-Heidelberg: Springer 1965
[6] S. Seshadri, C.S.: Geometric reductivity over an arbitrary base. To appear · Zbl 0371.14009
[7] T. Tankeev, S.G.: A global theory of Moduli for algebraic surfaces of general type. Izv. Akad. Nank SSSR Ser. Math.39, 1220-1236 (1972) · Zbl 0261.14002
[8] Z. Zariski, O.: Pencils on an algebraic variety and a new proof of a Theorem of Bertini. Trans. Am. Math. Soc.59, 48-70 (1941) · Zbl 0025.21502
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.