×

An integrodifferential equation for rigid heat conductors with memory. (English) Zbl 0391.45012


MSC:

45K05 Integro-partial differential equations
45F05 Systems of nonsingular linear integral equations
80A20 Heat and mass transfer, heat flow (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Coleman, B. D.; Gurtin, M. E., Equipresense and constitutive equation for rigid heat conductors, Z. Angew. Math. Phys., 18, 199-208 (1967)
[2] Davis, P. L., Hyperbolic integrodifferential equations, (Proc. Amer. Math. Soc., 47 (1975)), 155-160 · Zbl 0309.35047
[3] Davis, P. L., Hyperbolic integrodifferential equations arising in the electromagnetic theory of dialectrics, J. Differential Equations, 18, 170-178 (1975) · Zbl 0323.45023
[4] P. L. Davis; P. L. Davis · Zbl 0391.45011
[5] Desoer, C. A.; Vidyasagar, M., Feedback Systems: Input-Output Properties (1975), Academic Press: Academic Press New York · Zbl 0327.93009
[6] Finn, J. M.; Wheeler, L. T., Wave propagation aspects of the generalized theory of heat conduction, Z. Angew. Math. Phys., 23, 927-940 (1972) · Zbl 0249.35034
[7] Friedman, A., Partial Differential Equations of Parabolic Type (1964), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J · Zbl 0144.34903
[8] Friedman, A., Partial Differential Equations (1969), Holt, Rinehart & Winston: Holt, Rinehart & Winston New York · Zbl 0224.35002
[9] Friedman, A.; Shimbrot, M., Volterra integral equations in Banach space, Trans. Amer. Math. Soc., 126, 131-179 (1967) · Zbl 0147.12302
[10] Grabmueller, H., Ueber die Loesbarkeit einer Integrodifferentialgleichung aus der Theory der Waermeleitung, (Methoden und Verfahren der Mathematischen Physik, Band 10 (1973), Bibl. Institut: Bibl. Institut Mannheim/Wien/Zurich), 117-137 · Zbl 0289.45023
[11] Grabmueller, H., Existenz und Eindeutigkeit von Loesungen sum Inversen Problem, Technische Hochschule Darmstdadt, Preprint No. 226 (September 1975)
[12] Gurtin, M. E.; Pipkin, A. C., A general theory of heat conduction with finite wave speeds, Arch. Rational Mech. Anal., 31, 113-126 (1968) · Zbl 0164.12901
[13] Gurtin, M. E., On the thermodynamics of materials with memory, Arch. Rational Mech. Anal., 28, 40-50 (1968) · Zbl 0169.28002
[14] Holtzman, J. M., Nonlinear System Theory: A Functional Analysis Approach (1970), Prentice-Hall: Prentice-Hall Englewood Cliffs, N.J
[15] Krein, S. G., Linear Differential Equations in Banach Space, (Translations of Mathematical Monographs 29 (1971), Amer. Math. Soc: Amer. Math. Soc Providence, R.I) · Zbl 0636.34056
[16] M. Kremer; M. Kremer
[17] Miller, R. K., Nonlinear Volterra Integral Equations (1971), Benjamin: Benjamin Menlo Park, Calif · Zbl 0209.14202
[18] Miller, R. K., Volterra integral equations in a Banach space, Funkcial. Ekvac., 18, 163-193 (1975) · Zbl 0326.45007
[19] Miller, R. K.; Wheeler, R. L., Asymptotic behavior for a linear Volterra integral equation in Hilbert space, J. Differential Equations, 23, 270-284 (1977) · Zbl 0341.45017
[20] Miller, R. K.; Wheeler, R. L., A remark on hyperbolic integrodifferential equations, J. Differential Equations, 24, 51-56 (1977) · Zbl 0348.45015
[21] Nachlinger, R. R.; Wheeler, L., A uniqueness theorem for rigid heat conductors with memory, Quart. Appl. Math., 31, 267-273 (1973)
[22] Nunziato, J. W., On heat conduction in materials with memory, Quart. Appl. Math., 29, 187-204 (1971) · Zbl 0227.73011
[23] Nunziato, J. W., On uniqueness in the linear theory of heat conduction with finite wave speeds, SIAM J. Appl. Math., 25, 1-4 (1973) · Zbl 0237.35037
[24] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations, (Lecture Notes 10 (1974), University of Maryland: University of Maryland College Park, Md) · Zbl 0516.47023
[25] de LaVallée Poussin, Ch.-J, (Cours d’analyse infinitésimale, Vol. I (1947), Gauthier-Villars: Gauthier-Villars Paris)
[26] Redheffer, R.; Walter, W., Existence theorems for strongly coupled systems of partial differential equations over Bernstein classes, Bull. Amer. Math. Soc., 82, 899-902 (1976) · Zbl 0349.35015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.