×

Global existence for nonlinear wave equations. (English) Zbl 0405.35056


MSC:

35L70 Second-order nonlinear hyperbolic equations
35B65 Smoothness and regularity of solutions to PDEs
35B40 Asymptotic behavior of solutions to PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35L05 Wave equation
Full Text: DOI

References:

[1] John, Comm. Pure Appl. Math. 29 pp 649– (1976)
[2] John, Comm. Pure Appl. Math. 27 pp 377– (1974)
[3] Lax, J. Math. Phys. 5 pp 611– (1964)
[4] Schauder, Fund. Math. 24 pp 213– (1935)
[5] Friedrichs, Comm. Pure Appl. Math. 7 pp 345– (1954)
[6] Arnold, Usp. Mat. Nauk 18 (1963)
[7] Moser, Proc. Natl. Acad. Sci. U.S.A. 47 pp 1824– (1961)
[8] On invariant curves of free-preserving mappings of an annulus, Nachr. Akad. Wiss. Göttingen Math. Phys. Kl IIa (1), 1962, p. 1–20. · Zbl 0107.29301
[9] Moser, Ann. Scu. Norm. Pisa (3) 20 pp 265– (1966)
[10] Nash, Ann. Math. 63 pp 20– (1956)
[11] Zehnder, Comm. Pure Appl. Math. 28 pp 91– (1975)
[12] Implicit Function Theorems, Lectures at Stanford University, Summer, 1977.
[13] von Wahl, Math. Z. 120 pp 93– (1971)
[14] Dispersion of non-linear relativistic equations, II, Ann. Sci. Ecole Norm. Sup. 4e Ser. 1968, pp. 459–497.
[15] Strauss, J. Funct. Anal. 2 pp 409– (1968)
[16] Morawetz, Comm. Pure Appl. Math. 25 pp 1– (1972)
[17] Fischer, Comm. Math. Phys. 28 pp 1– (1972)
[18] Kato, Springer Lecture Notes 448 pp 25– (1975)
[19] Schwartz, Comm. Pure Appl. Math. 13 pp 509– (1969)
[20] Nonlinear Functional Analysis, Gordon and Breach, New York, 1969.
[21] Gromov, Usp. Mat. Nauk 25 pp 3– (1970)
[22] Russ. Math. Surv. 25
[23] Russ. Math. Surv. 1970 pp 1–
[24] Jacobowitz, Ann. Math. 95 pp 191– (1972)
[25] The inverse function theorem of Nash and Moser, Preprint, Cornell University 1974.
[26] Zehnder, Math. Ann. 219 pp 105– (1976)
[27] Hörmander, Arch. Rat. Mech. Anal. 62 pp 1– (1976)
[28] Global Existence for Nonlinear Wave Equations, Ph.D. Thesis, N.Y.U. 1978.
[29] Blow-up of solutions of nonlinear wave equations in three space dimensions, Preprint.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.