Rybakowski, Krzysztof P. Wazewski’s principle for retarded functional differential equations. (English) Zbl 0407.34056 J. Differ. Equations 36, 117-138 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 3 ReviewsCited in 29 Documents MSC: 34K25 Asymptotic theory of functional-differential equations Keywords:Retarded Functional Differential Equations; Asymptotic Behaviour of Solutions × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Borsuk, K.: Theory of retracts. (1967) · Zbl 0153.52905 [2] C. Conley, ”Isolated Invariant Sets and the Morse Index,” CBMS 38, Amer. Math. Soc., Providence, R.I. · Zbl 0397.34056 [3] Hale, J. K.: Theory of functional differential equations. (1977) · Zbl 0352.34001 [4] Kurzweil, J.: On approximation in real Banach spaces. Studia math. 14, 214-231 (1953) · Zbl 0064.10802 [5] Lasota, A.; Yorke, J. A.: The generic property of existence of solutions of differential equations in Banach spaces. J. differential equations 13, 1-12 (1973) · Zbl 0259.34070 [6] Mikołajska, Z.: Une remarque sur LES solutions bornées d’une équation differodifférentielle non linéaire. Ann. polon. Math. 15, 23-32 (1954) [7] Mikołajska, Z.: Sur le pilotage dans un champ de forces répulsives. Ann. polon. Math. 31, 234-240 (1976) [8] Onuchic, N.: On the asymptotic behavior of the solutions of functional differential equations. Differential equations and dynamical systems (1967) · Zbl 0162.13102 [9] Wa\.Zewski, T.: Sur un principe topologique de l’examen de l’allure asymptotique des intégrales des équations différentielles ordinaires. Ann. soc. Polon. math. 20, 279-313 (1947) [10] Whyburn, G. T.: Topological analysis. (1958) · Zbl 0080.15903 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.