×

Galerkin methods applied to some model equations for non-linear dispersive waves. (English) Zbl 0407.76014


MSC:

76B25 Solitary waves for incompressible inviscid fluids
35Q99 Partial differential equations of mathematical physics and other areas of application
41A15 Spline approximation
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdulloev, Kh. O.; Bogolubsky, I. L.; Makhankov, V. B., Phys. Lett., 56A, 427-428 (1976)
[2] Benjamin, T. B.; Bona, J. L.; Mahoney, J. J., Philos. Trans. Roy. Soc. London Ser. A, 272, 47-48 (1972) · Zbl 0229.35013
[3] Eilbeck, J. C.; McGuire, G. R., J. Computational Physics, 19, 43-57 (1975) · Zbl 0325.65054
[4] Eilbeck, J. C.; McGuire, G. R., J. Computational Physics, 23, 63-73 (1977) · Zbl 0361.65100
[5] Gardner, G. S.; Green, J. M.; Kruskal, M. D.; Miura, R. M., Phys. Rev. Lett., 19, 1095-1097 (1967) · Zbl 1061.35520
[6] Greig, I. S., J. Computational Physics, 20, 64-80 (1976) · Zbl 0382.65043
[7] IMSL: International Mathematical and Statistical Libraries, Houston, Tex., 1975.; IMSL: International Mathematical and Statistical Libraries, Houston, Tex., 1975.
[8] Korteweg, D. J.; de Vries, G., Philos. Mag., 39, 422-443 (1895)
[9] Peregrine, D. H., J. Fluid Mech., 25, 321-330 (1966)
[10] Schoenberg, I. J., Quart. Appl. Math., 4, 45-99 (1946)
[11] Thomée, V.; Wendroff, B., SIAM J. Numer. Anal., 11, 1059-1068 (1974) · Zbl 0292.65052
[12] L. Wahlbin; L. Wahlbin
[13] Wahlbin, L., Numer. Math., 23, 289-303 (1975) · Zbl 0283.65052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.