Thole, U.; Zimmermann, H.-J.; Zysno, P. On the suitability of minimum and product operators for the intersection of fuzzy sets. (English) Zbl 0408.94030 Fuzzy Sets Syst. 2, 167-180 (1979). Page: −5 −4 −3 −2 −1 ±0 Show Scanned Page Cited in 1 ReviewCited in 65 Documents MSC: 94D05 Fuzzy sets and logic (in connection with information, communication, or circuits theory) 62P25 Applications of statistics to social sciences 91B06 Decision theory 91A35 Decision theory for games Keywords:Fuzzy Set Intersection; Human Decisions; Measurement PDF BibTeX XML Cite \textit{U. Thole} et al., Fuzzy Sets Syst. 2, 167--180 (1979; Zbl 0408.94030) Full Text: DOI OpenURL References: [1] Bellman, R.; Giertz, M., On the analytic formalism of the theory of fuzzy sets, Information sciences, 5, 149-156, (1973) · Zbl 0251.02059 [2] Bellman, R.; Zadeh, L.A., Decision-making in a fuzzy environment, Management science, 17, 141-164, (1970) · Zbl 0224.90032 [3] Charnes, A.; Cooper, W.W., Management models and industrial applications of linear programming, (1961), Wiley New York · Zbl 0107.37004 [4] Cronbach, L.J., Response sets and test validity, Educ. psychol. measmt., 6, 475-494, (1946) [5] Cronbach, L.J., Further evidence on response sets and test designs, Educ. psychol. measmt., 10, 3-31, (1950) [6] Diederich, G.W.; Messick, S.J.; Tucker, L.R., A general least squares solution for successive intervals, Psychometrika, 22, 159-173, (1957) · Zbl 0080.13405 [7] Dreyfuss-Raimi, G.; Robinson, J.; Kochen, M.; Badre, A.N., On the psycholinguistic reality of fuzzy sets: effect of context and set, (1974), MHRI manuscript [8] Dyer, J.S., Interactive goal programming, Management science, 19, 62-70, (1972/73) · Zbl 0257.90023 [9] Hamacher, H., On logical connectives of fuzzy statements and their affiliated truth-functions, (), presented at: [10] Havlicek, L.L.; Peterson, N.L., Effect of the violation of assumptions upon significance levels of the Pearson r, Psychol. bull., 84, 373-377, (1977) [11] Hersh, H.M.; Caramazza, A.A., A fuzzy set approach to modifiers and vagueness in natural language, J. exp. psychol. (general), 105, 254-276, (1976) [12] Hevner, K., An empirical study of three psychophysical methods, J. gen. psychol., 4, 191-212, (1930) [13] Jones, L.V.; Thurstone, L.L., The psychophysics of semantics: an experimental investigation, J. appl. psychol., 39, 31-36, (1955) [14] Kuhn, H.W.; Tucker, A.W., Nonlinear programming, () · Zbl 0044.05903 [15] Oden, G.C., Integration of fuzzy logical information, J. exp. psychol.: human perception and performance, 106, 565-575, (1977) [16] Rips, L.J.; Shoben, E.J.; Smith, E.E., Semantic distance and the verification of semantic relations, J. verbal learning and verbal behavior, 12, 1-20, (1973) [17] Rosch, E.H., On the internal structure of perceptual and semantic categories, (), 111-114 [18] Rosch, E.H., Cognitive representations of semantic categories, J. exp. psychol. (general), 104, 192-233, (1975) [19] Sixtl, F., Messmethoden der psychologie, (1967), Beltz Weinheim [20] Thurstone, L.L., A law of comparative judgment, Psychol. rev., 34, 273-286, (1927) [21] Thurstone, L.L., Psychophysical analysis, Amer. J. psychol., 38, 368-389, (1927) [22] Zadeh, L.A., Fuzzy sets, Information and control, 8, 338-353, (1965) · Zbl 0139.24606 [23] Zimmermann, H.J., Fuzzy programming and linear programming with several objective functions, Fuzzy sets and systems, 1, 45-55, (1978) · Zbl 0364.90065 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.