×

Algorithmes pour suites non convergentes. (French) Zbl 0411.65003


MSC:

65B10 Numerical summation of series
40A05 Convergence and divergence of series and sequences
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] Bertier, P., Bouroche, J.M.: Analyse des données multidimensionnelles. Paris: Presses Universitaires de France 1975
[2] Brezinski, C.: Accélération de la convergence en analyse numérique. Cours du D.E.A, Lille 1973
[3] Delahaye, J.P.: Quelques problèmes posés par les suites de points non convergentes et algorithmes pour de telles suites. Thèse de 3e cycle, Lille 1979
[4] Delahaye, J.P.: Expériences numériques sur les algorithmes d’extraction pour suites non convergentes. Pub. ANO n0 5, Lille, Avril 1979
[5] Denel, J.: Extensions of the continuity of point-to-set maps: Applications to fixed point algorithms. Mathematical Programming Study10, 48-68, 1979 · Zbl 0414.90072
[6] Eaves, B.C.: Computing Kakutani Fixed Points. SIAM J. Appl. Math.21, 236-244 (1971) · Zbl 0224.52002
[7] Fiorot, J.C., Huard, P.: Composition and union of general algorithms of optimization. Mathematical Programming Study n0 10, 69-85, 1979 · Zbl 0403.90072
[8] Germain-Bonne, B.: Estimation de la limite de suites et formalisation des procédés d’accélération de convergence. Thèse, Lille, 1978
[9] Huard, P.: Optimisation dans ? n ?2ème partie: Algorithmes généraux. Polycopié. Lille 1972
[10] Huard, P.: Optimization algorithms and point-to-set maps. Mathematical Programming Study8, 308-331, 1975 · Zbl 0312.90052
[11] Huard, P.: Extensions of Zangwill’s theorem. Mathematical Programming Study10, 98-103, 1979 · Zbl 0401.90107
[12] Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J.8, 457-459, 1941 · Zbl 0061.40304
[13] Metcalf, F.T., Rogers, T.D.: The cluster set of sequence of successive approximation. J. Math. Anal. Appl.31, 206-212, 1970 · Zbl 0203.14703
[14] Polak, E.: Computational methods in optimization: A unified approach. New York: Academic Press 1971 · Zbl 0257.90055
[15] Sarkowski, A.N.: Attracting and attracted sets. Soviet Math. Dokl.6, 268-270, 1965 · Zbl 0174.54402
[16] Zangwill, W.I.: Nonlinear programming: A unified approach. Englewood Cliffs: Prentice Hall 1969 · Zbl 0195.20804
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.