×

Cryptology: The mathematics of secure communication. (English) Zbl 0411.94009


MSC:

94A60 Cryptography
94A05 Communication theory
94A15 Information theory (general)
94-02 Research exposition (monographs, survey articles) pertaining to information and communication theory
94-03 History of information and communication theory
68P25 Data encryption (aspects in computer science)
91A80 Applications of game theory
93E12 Identification in stochastic control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Albert, A. A.: Some Mathematical Aspects of Cryptography. Invited paper AMS 382nd Meeting, Manhattan, Kansas, November 22, 1941
[2] Kahn, D., The Codebreakers. The story of secret writing (1976), New York: MacMillan, New York
[3] Rohrbach, H., Mathematical and Mechanical Methods in Cryptography, Cryptologia, 2, 20-37 (1978) · doi:10.1080/0161-117891852767
[4] Sinkov, A., Elementary Cryptanalysis — A mathematical approach (1968), New York: Random House, New York
[5] Friedman, W. F.:Methods for the solution of running-key ciphers. ...: Riverbank Publications No 16. 1918
[6] Vernam, G. S., Cipher Printing Telegraph Systems for Secret Wire and Radio Telegraphic Communications, J. Am. Inst. Electr. Engin., XLV, 109-115 (1926)
[7] Shannon, C. E., Communication Theory of Secrecy Systems, Bell Syst. Techn. J., XXVIII, 656-715 (1949) · Zbl 1200.94005
[8] Deavours, C. A., Unicity Points in Cryptanalysis, Cryptologia, 1, 46-68 (1977) · doi:10.1080/0161-117791832797
[9] Kahn, D., Modern cryptology, Scient. Am., 215, 38-46 (1966)
[10] Hill, L. S., Cryptography in an Algebraic Alphabet, Am. Mathem. Monthly, 36, 306-312 (1929) · doi:10.2307/2298294
[11] Hill, L. S.: Concerning Certain Linear Transformation Apparatus of Cryptography.Am. Mathem. Monthly 38, 135-154 · Zbl 0001.19704
[12] Feistel, H., Cryptography and Computer Privacy, Scient. Am., 228, 15-23 (1973)
[13] Berlekamp, E. R., Algebraic coding theory (1968), New York: McGraw-Hill, New York · Zbl 0988.94521
[14] MacWilliams, F. J.; Sloane, N. J. A., The theory of error- correcting codes. Vols. I and II (1977), New York: North Holland, New York · Zbl 0369.94008
[15] Peterson, W. W.; Weldon, E. J., Error-correcting codes (1972), Cambridge: MIT Press, Cambridge · Zbl 0251.94007
[16] Martin, J., Security, accuracy and privacy in computer systems (1973), Englewood Cliffs: Prentice/Hall, Englewood Cliffs
[17] Barker, W. G., Cryptoanalysis of the Hagelin cryptograph (1977), Laguna Hills: Aegean Park Press, Laguna Hills
[18] Randell, B., Colossus: Godfather of the Computer, New Scient, 173, 346-348 (1977)
[19] Schatz, B. R., Automated Analysis of Cryptograms, Cryptologia, 1, 116-142 (1977) · doi:10.1080/0161-117791832869
[20] Golomb, S. W., Shift register sequences (1967), San Francisco: Holden-Day, San Francisco · Zbl 0267.94022
[21] Gill, A., Linear sequential circuits: Analysis, synthesis and applications (1967), New York: McGraw Hill, New York · Zbl 0173.19003
[22] Massey, J. L., Shift Register Synthesis and BCH Decoding, IEEE Transact. Inform. Theory, IT-15, 122-127 (1969) · Zbl 0167.18101 · doi:10.1109/TIT.1969.1054260
[23] Purdy, G. B., A high security log-in procedure, Commun. ACM, 17, 442-445 (1974) · doi:10.1145/361082.361089
[24] Evans, A.; Kantrowitz, W., A User Authentication Scheme Not Requiring Secrecy in the Computer, Commun. ACM, 17, 437-442 (1974) · doi:10.1145/361082.361087
[25] Pohlig, S. C.; Hellman, M. E., An Improved Algorithm for Computing Logarithms over GF(p) and its Cryptographic Significance, IEEE Transact. Inform. Theory, IT-24, 106-110 (1978) · Zbl 0375.68023 · doi:10.1109/TIT.1978.1055817
[26] Gardner, M., Mathematical Games (section), Scient. Am., 237, 120-124 (1977) · doi:10.1038/scientificamerican0877-120
[27] Diffie, W.; Hellman, M. E., New Directions in Cryptography, IEEE Transact. Inform. Theory, IT-22, 644-654 (1976) · Zbl 0435.94018 · doi:10.1109/TIT.1976.1055638
[28] Merkle, R. C., Secure Communications Over Insecure Channels, Commun. ACM, 21, 294-299 (1978) · Zbl 1342.94085 · doi:10.1145/359460.359473
[29] Rivest, R., Shamir, A., Adleman, L.: A Method for Obtaining Digital Signatures and Public-key Cryptosystems.MIT Lab. Comp. Sci. Rep; MIT/LCS/TM-82 · Zbl 0368.94005
[30] Rivest, R.; Shamir, A.; Adleman, L., A Method for Obtaining Digital Signatures and Public-key Cryptosystems, Commun. ACM, 21, 120-126 (1978) · Zbl 0368.94005 · doi:10.1145/359340.359342
[31] Lipton, S. M.; Matyas, S. M., Making the Digital Signature Legal - and Safeguarded, Data Commun., 7, 41-52 (1978)
[32] Shapley, D.: The New Unbreakable Codes - Will They Put NSA Out of Business?.The Washington Post, Sunday, July 9, 1978
[33] Simmons, G. J., Norris, M. J.: Preliminary Comments on the M. I. T. Public-Key CryptoSystem.Cryptologial, 406-414 (1977)
[34] Rivest, R. L., Remarks on a Proposed Cryptanalytic Attack on the M. I. T. Public-Key Cryptosystem, Cryptologia, 2, 62-65 (1978) · doi:10.1080/0161-117891852785
[35] Gilbert, E. N.; MacWilliams, F. J.; Sloane, N. J. A., Codes Which Detect Deception, Bell Syst. Techn. J., 53, 405-423 (1974) · Zbl 0275.94006
[36] Roberts, R. W., Encryption Algorithm for Computer Data Encryption. (NBS), Fed. Reg., 40, 12134-12139 (1975)
[37] Diffie, W.; Hellman, M. E., Exhaustive Cryptanalysis of the NBS Data Encryption Standard, Computer, 10, 74-84 (1977) · doi:10.1109/C-M.1977.217750
[38] Deavours, C. A., The Ithaca Connection: Computer Cryptography in the Making, Cryptologia, 1, 312-317 (1977) · doi:10.1080/0161-117791833057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.