×

How to share a secret. (English) Zbl 0414.94021


MSC:

94A62 Authentication, digital signatures and secret sharing
94A60 Cryptography
Full Text: DOI

References:

[1] Blakley G R. Safeguarding cryptographic keys. In: Proceedings of the 1979 AFIPS National Computer Conference, Monval, 1979. 313-317
[2] Shamir A. How to share a secret. Commun ACM, 1979, 22: 612-613 · Zbl 0414.94021
[3] Wang Y J, Wong D S, Wu Q H, et al. Practical distributed signatures in the standard model. In: Proceedings of the Cryptographer’s Track at the RSA Conference, San Francisco, 2014. 307-326 · Zbl 1337.94103
[4] Deng H, Wu Q H, Qin B, et al. Ciphertext-policy hierarchical attribute-based encryption with short ciphertexts. Inform Sci, 2014, 275: 370-384 · Zbl 1341.68043
[5] Deng H, Wu Q H, Qin B, et al. Who is touching my cloud. In: Proceedings of the 19th European Symposium on Research in Computer Security, Part I, Wroclaw, 2014. 362-379
[6] Liu W R, Liu J W, Wu Q H, et al. Practical direct chosen ciphertext secure key-policy attribute-based encryption with public ciphertext test. In: Proceedings of the 19th European Symposium on Research in Computer Security, Part II, Wroclaw, 2014. 91-108 · Zbl 1443.94071
[7] Tang C M, Gao S H. Leakproof secret sharing protocols with applications to group identification scheme. Sci China Inf Sci, 2012, 55: 1172-1185 · Zbl 1245.94103
[8] McEliece R J, Sarwate D V. On sharing secrets and Reed-Solomon codes. Commun ACM, 1981, 24: 583-584
[9] Feldman J, Malkin T, Servedio R A, et al. Secure network coding via filtered secret sharing. In: Proceedings of 42nd Annual Allerton Conference on Communication, Control, and Computing, Illinois, 2004. 30-39
[10] Ding L H, Wu P, Wang H, et al. Lifetime maximization routing with network coding in wireless multihop networks. Sci China Inf Sci, 2013, 56: 022303 · Zbl 1488.94004
[11] Zheng J, Li J D, Liu Q, et al. Performance analysis of three multi-radio access control policies in heterogeneous wireless networks. Sci China Inf Sci, 2013, 56: 122305
[12] Zhang Z F, Liu M L. Rational secret sharing as extensive games. Sci China Inf Sci, 2013, 56: 032107 · Zbl 1488.91014
[13] Beimel A. Secret-sharing schemes: a survey. In: Proceedings of the 3rd International Workshop on Coding and Cryptology, Qingdao, 2011. 11-46 · Zbl 1272.94074
[14] Karnin E D, Greene J W, Hellman M E. On secret sharing systems. IEEE Trans Inform Theory, 1983, 29: 35-41 · Zbl 0503.94018
[15] Benaloh J, Leichter J. Generalized secret sharing and monotone functions. In: Proceedings of Advances in Cryptology—CRYPTO’88, Santa Barbara, 1988. 27-35 · Zbl 0715.94003
[16] Brickell E F. Some ideal secret sharing schemes. In: Proceedings of the Workshop on the Theory and Application of Cryptographic Techniques on Advances in Cryptology, Houthalen, 1989. 468-475 · Zbl 0724.94011
[17] Ito M, Saito A, Nishizeki T. Secret sharing scheme realizing general access structure. In: IEEE/IEICE Global Telecommunications Conference, Tokyo, 1987. 99-102
[18] Capocelli R M, de Santis A, Gargano L, et al. On the size of shares of secret sharing schemes. J Cryptol, 1993, 6: 157-168 · Zbl 0786.68030
[19] Csirmaz L. The size of a share must be large. J Cryptol, 1997, 10: 223-231 · Zbl 0897.94012
[20] Farràs O, Metcalf-Burton J R, Padrró C, et al. On the optimization of bipartite secret sharing schemes. Des Codes Cryptogr, 2012, 63: 255-271 · Zbl 1236.94075
[21] Martí-Farré J, Padrró C. On secret sharing schemes, matroids and polymatroids. J Math Cryptol, 2010, 4: 95-120 · Zbl 1201.94111
[22] Padró C, Sáez G. Secret sharing schemes with bipartite access structure. IEEE Trans Inform Theory, 2000, 46: 2596-2604 · Zbl 0999.94031
[23] Padró C, Vázquez L, Yang A. Finding lower bounds on the complexity of secret sharing schemes by linear programming. Discrete Appl Math, 2013, 161: 1072-1084 · Zbl 1262.68049
[24] Beimel A, Livne N. On matroids and non-ideal secret sharing. IEEE Trans Inform Theory, 2008, 54: 482-501 · Zbl 1112.94024
[25] Beimel A, Livne N, Padró C. Matroids can be far from ideal secret sharing. In: Proceedings of the 5th Conference on Theory of Cryptography, New York, 2008. 194-212 · Zbl 1162.94337
[26] Beimel A, Orlov I. Secret sharing and non-shannon information inequalities. IEEE Trans Inform Theory, 2011, 57: 539-557 · Zbl 1213.94150
[27] Stinson D R. An explication of secret sharing schemes. Des Codes Cryptogr, 1992, 2: 357-390 · Zbl 0793.68111
[28] Beimel A, Weinreb E. Monotone circuits for monotone weighted threshold functions. Inf Process Lett, 2006, 97: 12-18 · Zbl 1184.68227
[29] Morillo P, Padró C, Sáez G, et al. Weighted threshold secret sharing schemes. Inf Process Lett, 1999, 70: 211-216 · Zbl 0998.94546
[30] Beimel A, Tassa T, Weinreb E. Characterizing ideal weighted threshold secret sharing. SIAM J Discrete Math, 2008, 22: 360-397 · Zbl 1161.94005
[31] Farràs O, Padró C. Ideal hierarchical secret sharing schemes. IEEE Trans Inform Theory, 2012, 58: 3273-3286 · Zbl 1365.94479
[32] Simmons G J. How to (really) share a secret. In: Proceedings of Advances in Cryptology—CRYPTO’88, Santa Barbara, 1988. 390-448
[33] Tassa T, Dyn N. Multipartite secret sharing by bivariate interpolation. J Cryptol, 2009, 22: 227-258 · Zbl 1159.94373
[34] Farràs O, Padró C, Xing C, et al. Natural generalizations of threshold secret sharing. IEEE Trans Inform Theory, 2014, 60: 1652-1664 · Zbl 1360.94347
[35] Herranz J, Sáez G. New results on multipartite access structures. IEE Proc Inf Secur, 2006, 153: 153-162
[36] Ng S L. Ideal secret sharing schemes with multipartite access structures. IEE Proc Commun, 2006, 153: 165-168 · Zbl 1273.94366
[37] Tassa T. Hierarchical threshold secret sharing. J Cryptol, 2007, 20: 237-264 · Zbl 1113.68048
[38] Beutelspacher A, Wettl F. On 2-level secret sharing. Des Codes Cryptogr, 1993, 3: 127-134 · Zbl 0770.94004
[39] Giuletti M, Vincenti R. Three-level secret sharing schemes from the twisted cubic. Discrete Math, 2010, 310: 3236-3240 · Zbl 1228.05103
[40] Farràs O, Mart´i-Farrré J, Padró C. Ideal multipartite secret sharing schemes. J Cryptol, 2012, 25: 434-463 · Zbl 1272.94078
[41] Herzog J, Hibi T. Discrete polymatroids. J Algebr Comb, 2002, 16: 239-268 · Zbl 1012.05046
[42] Brickell E F, Davenport D M. On the classification of ideal secret sharing schemes. J Cryptol, 1991, 4: 123-134 · Zbl 0747.94010
[43] Martí-Farré J, Padró C. Ideal secret sharing schemes whose minimal qualified subsets have at most three participants. Des Codes Cryptogr, 2009, 52: 1-14 · Zbl 1237.94114
[44] Oxley J G. Matroid Theory. New York: Oxford University Press,
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.