A unified formulation of the central limit theorem for small and large deviations from the mean. (English) Zbl 0416.60030


60F10 Large deviations
60F05 Central limit and other weak theorems
Full Text: DOI


[1] Bahadur, R. R.; Ranga Rao, R., On deviations of the sample mean, Ann. Math. Statist., 31, 1015-1027 (1960) · Zbl 0101.12603
[2] Borokov, A. A.; Rogozin, B. A., On the multi-dimensional central limit theorem, Theor. Probability Appl., 10, No. 1, 55-62 (1965)
[3] Blackwell, D.; Hodges, J. L., The probability in the extreme tail of a convolution, Ann. Math. Statist., 30, 1113-1120 (1959) · Zbl 0099.35105
[4] Feller, W., An introduction to probability theory and its applications. Vol. 1 (1950), New York: Wiley, New York · Zbl 0039.13201
[5] Feller, W., An introduction to probability theory and its applications. Vol. 2 (1950), New York: Wiley, New York · Zbl 0039.13201
[6] Cramér, H., Sur un nouveau théorème-limite de la théorie des probabilités, Actualités scientifiques et industrielles (1938), Paris: Hermann, Paris
[7] Höglund, T., A refined saddle point approximation, Ark. Mat., 12, 173-180 (1974) · Zbl 0325.60035
[8] Ibragimov, I. A.; Linnik, Yu. V., Independent and stationary sequences of random variables (1971), Groningen: Wolters-Noordhoff, Groningen · Zbl 0219.60027
[9] Petrov, V. V., On the probabilities of large deviations of sums of independent random variables, Theor. Probability Appl., 10, 287-298 (1965) · Zbl 0235.60028
[10] Petrov, V. V., Sums of independent random variables (1975), Berlin-Heidelberg-New York: Springer, Berlin-Heidelberg-New York · Zbl 0322.60043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.