×

Regularity properties of Schrödinger and Dirichlet semigroups. (English) Zbl 0419.60075


MSC:

60J65 Brownian motion
81P20 Stochastic mechanics (including stochastic electrodynamics)
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Albeverio, S; Hoegh-Krohn, R; Streit, L, Energy forms, Hamiltonians and distorted Brownian paths, J. math. phys., 18, 907-917, (1977) · Zbl 0368.60091
[2] Babbit, D, The Wiener integral and perturbation theory of the Schrödinger operator, Bull. amer. math. soc., 70, 254-259, (1964)
[3] Berthier, A.M; Gaveau, B, Critère de convergence des fonctionnelles de Kac et application en mécanique quantique et en géométrie, J. functional analysis, 29, 416-424, (1978) · Zbl 0398.60076
[4] Beurling, A; Deny, J, Dirichlet spaces, (), 208-215 · Zbl 0089.08201
[5] Carmona, R, Pointwise bounds for Schrödinger eigenstates, Comm. math. phys., 62, 97-106, (1978) · Zbl 0403.47016
[6] Deift, P; Simon, B, On the decoupling of finite singularities from the question of asymptotic completeness in two body quantum systems, J. functional analysis, 23, 218-238, (1976) · Zbl 0344.47007
[7] Deny, J, Méthodes hilbertiennes en théorie du potentiel, () · Zbl 0212.13401
[8] Deny, J; Lions, J.L, LES espaces de type beppo-Levi, Ann. inst. Fourier (Grenoble), 5, 305-370, (1953/1954) · Zbl 0065.09903
[9] Eckmann, J.P, Hypercontractivity for anharmonic oscillators, J. functional analysis, 16, 388-404, (1974) · Zbl 0285.47032
[10] Faris, W.G, Self adjoint operators, () · Zbl 0149.35601
[11] Faris, W.G, Product spaces and Nelson’s inequality, Helv. phys. acta, 48, 721-730, (1975)
[12] Faris, W.G; Simon, B, Degenerate and non degenerate ground states for Schrödinger operators, Duke math. J., 42, 559-567, (1975) · Zbl 0339.35033
[13] Feissner, G, Hypercontractive semigroups and Sobolev’s inequality, Trans. amer. math. soc., 210, 51-62, (1975) · Zbl 0308.46034
[14] Feldman, J, On the Schrödinger and heat equations for non negative potentials, Trans. amer. math. soc., 108, 251-264, (1963) · Zbl 0116.07302
[15] Fukushima, M, On the generation of Markov processes by symmetric forms, (), 46-79
[16] Fukushima, M, Potential theory of symmetric Markov process and its applications, (), 119-133
[17] Glimm, J, Boson fields with non-linear self-interaction in two-dimension, Comm. math. phys., 8, 12-25, (1968) · Zbl 0173.29903
[18] Gross, L, Existence and uniqueness of physical ground states, J. functional analysis, 10, 52-109, (1972) · Zbl 0237.47012
[19] Gross, L, Logarithmic Sobolev inequalities, Amer. J. math., 97, 1061-1083, (1976) · Zbl 0318.46049
[20] Herbst, I.W; Sloan, A.D, Perturbation of translation invariant positivity preserving semigroups on L2(rn), Trans. amer. math. soc., 236, 238-360, (1978)
[21] Hoegh-Krohn, R; Simon, B, Hypercontractive semigroups and two dimensional Bose field, J. functional analysis, 9, 121-180, (1972) · Zbl 0241.47029
[22] Hunt, G.A, Some theorems concerning Brownian motion, Trans. amer. math. soc., 81, 294-319, (1956) · Zbl 0070.36601
[23] Ito, K; McKean, H.P, Diffusion processes and their sample paths, (1974), Springer-Verlag Berlin/New York · Zbl 0285.60063
[24] Kac, M, On some connection between probability theory and differential and integral equations, (), 189-215
[25] Kato, T, Perturbation theory for linear operators, (1966), Springer-Verlag Berlin/ New York · Zbl 0148.12601
[26] Lieb, E, Bounds on the eigenvalues of the Laplace and Schrödinger operators, Bull. amer. math. soc., 82, 751-753, (1976) · Zbl 0329.35018
[27] Mc Kean, H.P, − δ plus a bad potential, J. math. phys., 18, 1277-1279, (1977) · Zbl 0357.47025
[28] Nelson, E, A quartic interaction in two dimensions, (), 69-73
[29] Nelson, E, The free Markov field, J. functional analysis, 13, 211-227, (1973) · Zbl 0273.60079
[30] Neveu, J, Sur l’espérance conditionnelle par rapport à un mouvement brownien, Ann. inst. H. Poincaré sect. B, 12, 105-109, (1976) · Zbl 0356.60028
[31] Ray, D, On the spectra of second order differential operators, Trans. amer. math. soc., 77, 299-321, (1954) · Zbl 0058.32901
[32] Reed, M; Simon, B, Fourier analysis self-adjointness, () · Zbl 0308.47002
[33] Rosen, J.S, Sobolev inequalities for weight spaces and super contractivity, Trans. amer. math. soc., 222, 367-376, (1976) · Zbl 0344.46072
[34] Rosen, L, A λϑ2n theory without cutoffs, Comm. math. phys., 16, 157-183, (1970) · Zbl 0187.25701
[35] Schwartz, L, Théorie des distributions, (1966), Hermann Paris
[36] Segal, I.E, Construction of nonlinear local quantum processes, I, Ann. of math., 92, 462-481, (1970) · Zbl 0213.40904
[37] Semenov, Y.A, Schrödinger operators with Llocp-potentials, Comm. math. phys., 53, 277-284, (1977) · Zbl 0346.47011
[38] Silverstein, M.L, Symmetric Markov processes, () · Zbl 0177.45801
[39] Silverstein, M.L, Boundary theory for symmetric Markov processes, () · Zbl 0177.45801
[40] Simon, B, Quantum mechanics for Hamiltonians defined as quadratic forms, () · Zbl 0232.47053
[41] Simon, B, Pointwise bounds on eigenfunctions and wave packets in N-body quantum systems, III, Trans. amer. math. soc., 208, 317-329, (1975) · Zbl 0305.35078
[42] Simon, B, A remark on Nelson’s best hypercontractive estimates, (), 376-378 · Zbl 0441.46026
[43] {\scB. Simon}, “Functional Integration and Quantum Physics,” Academic Press New York, in press. · Zbl 1061.28010
[44] Weissler, F.B, Logarithmic Sobolev inequalities for the heat diffusion semigroup, Trans. amer. math. soc., 237, 255-269, (1978) · Zbl 0376.47019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.