On the weak convergence of an ergodic iteration for the solution of variational inequalities for monotone operators in Hilbert space. (English) Zbl 0423.47023


47H07 Monotone and positive operators on ordered Banach spaces or other ordered topological vector spaces
49J40 Variational inequalities
Full Text: DOI


[1] Baillon, J. B., Un théorème de type ergodique pour les contractions non linéaires dans un espace de Hilbert, C. R. Acad. Sci. Paris A-B, 280, A1511-A1514 (1975) · Zbl 0307.47006
[2] Baillon, J. B.; Brezis, H., Une remarque sur le comportement asymptotique des semigroupes non linéaires, Houston J. Math., 2, 5-7 (1976) · Zbl 0318.47039
[3] Browder, F. E., Nonlinear variational inequalities and maximal monotone mappings in Banach spaces, Math. Ann., 183, 213-231 (1969) · Zbl 0208.39105
[4] Bruck, R. E., An iterative solution of a variational inequality for certain monotone operators in Hilbert space, Bull. Amer. Math. Soc., 81, 890-892 (1975) · Zbl 0332.49005
[5] Bruck, R. E., Corrigendum to the above, Bull. Amer. Math. Soc., 82, 353 (1976) · Zbl 0338.49003
[6] Bruck, R. E., A strongly convergent iterative solution of \(0 ϵU(x)\) for a maximal monotone operator \(U\) in Hilbert space, J. Math. Anal. Appl., 48, 114-126 (1974) · Zbl 0288.47048
[7] Darbo, G., Punti uniti in transformazioni a condominio non compatto, (Rend. Sem. Mat. Univ. Padova, 24 (1955)), 84-92 · Zbl 0064.35704
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.