×

On integration in Banach spaces. III. (English) Zbl 0429.28011


MSC:

28B05 Vector-valued set functions, measures and integrals
46G10 Vector-valued measures and integration

Citations:

Zbl 0224.46050

References:

[1] Alo R. A., de Korvin A.: A one-sided Fubini theorem for Gowurin measures. J. Math. Anal Appl. 38 (1972), 387-398. · Zbl 0226.46046 · doi:10.1016/0022-247X(72)90097-2
[2] Bagby R., Swartz C.: Projective tensor product of \(l^{p}\)-valued measures. Mat. Čas. 25 (1975), 256-269. · Zbl 0306.46060
[3] Bartle R. G.: A general bilinear vector integral. Studia Math. 15 (1956), 337-352. · Zbl 0070.28102
[4] Debieve C: Produit de mesures a valeurs vectorielles, Théorème de Fubini. Ann. Soc. Sci. Brux. T. 87, I (1973), 67-76. · Zbl 0254.28015
[5] Dinculeanu N.: Integration on locally compact spaces. Noordhoff International Publishing, Leyden, 1974. · Zbl 0284.28003
[6] Dobrakov I.: On integration in Banach spaces, I. Czech. Math. J. 20 (1970), 511 - 536. · Zbl 0215.20103
[7] Dobrakov I.: On integration in Banach spaces, II. Czech. Math. J. 20 (1970), 680-695. · Zbl 0224.46050
[8] Dobrakov I.: On representation of linear operators on \(C_{0}(T, X)\). Czech. Math. J. 21 (1971), 13-30. · Zbl 0225.47018
[9] Dobrakov I.: Products of operator valued measures and the Fubini theorem. Abstracts of the Fourth Prague Topological Symposium, 1976.
[10] Duchoň M., Kluvánek I.: Inductive tensor product of vector-valued measures. Mat. Čas. 17 (1967), 108-112. · Zbl 0162.19101
[11] Duchoň M.: On the projective tensor product of vector-valued measures, I, II. Mat. Čas. 17 (1967), 113-120, 19 (1969), 228-234. · Zbl 0162.19102
[12] Duchoň M.: On tensor product of vector measures in locally compact spaces. Mat. Čas. 19 (1969), 324-329. · Zbl 0187.00901
[13] Duchoň M.: On vector measures in Cartesian products. Mat. Čas. 21 (1971), 241 - 247.
[14] Duchoň M.: A convolution algebra of vector-valued measures on compact abelian semigroup. Rev. Roumaine Math. Pures Appl. 16 (1971), 1467-1476. · Zbl 0245.28006
[15] Duchoň M.: Fubini’s theorem and convolution of vector-valued measures. Mat. Čas. 23 (1973), 170-178.
[16] Duchoň M.: Product of dominated vector measures. Math. Slovaca 27 (1977), 293-301. · Zbl 0354.28004
[17] Dudley R., Pakula L.: A counter-example on the inner product of measures. Indiana Univ. Math. J. 21 (1972), 843-845. · Zbl 0221.28003 · doi:10.1512/iumj.1972.21.21067
[18] Dudley R. M.: A note on products of spectral measures. Vector and operator valued measures and applications. Academic Press, 1973, 125-126.
[19] Dunford N., Schwartz J.: Linear operators, part I. Interscience Publishers, New York 1958. · Zbl 0084.10402
[20] Gould G. G.: Integration over vector-valued measures. Proc. London Math. Soc. (3) 15 (1965), 193-225. · Zbl 0138.38403 · doi:10.1112/plms/s3-15.1.193
[21] Halmos P. R.: Measure theory. D. Van Nostrand, New York 1950. · Zbl 0040.16802
[22] Hille E., Phillips R.: Functional analysis and semigroups. Amer. Math. Soc. Coll. Publ., Providence 1957. · Zbl 0078.10004
[23] Huneycutt J. E., Jr.: Products and convolutions of vector valued set functions. Studia Math. 41 (1972). · Zbl 0233.28013
[24] Kelley J. L., Srinivasan T. P.: On the Bochner integral. in Vector and operator valued measures and applications. Academic Press, Inc., New York 1973, 165-174. · Zbl 0293.28010
[25] Kluvánek I.: An example concerning the projective tensor product of vector-valued measures. Mat. Čas. 20 (1970), 81-83.
[26] Maynard H. B.: A general Radon-Nikodym theorem. in Vector and operator valued measures and applications, Academic Press, Inc., New York 1973, 233 - 246. · Zbl 0301.28006
[27] Millington H.: Products of group-valued measures. Studia Math. 54 (1975), 7-27. · Zbl 0325.28010
[28] Rao M. B.: Countable additivity of a set function induced by two vector-valued measures. Indiana Univ. Math. J. 21 (1972), 847-848. · Zbl 0239.28002 · doi:10.1512/iumj.1972.21.21068
[29] Swartz C.: The product of vector-valued measures. Bull. Australian Math. Soc. 8 (1973), 359-366. · Zbl 0248.28009 · doi:10.1017/S0004972700042659
[30] Swartz C.: A generalization of a theorem of Duchon on products of vector measures. J. Math. Anal. Appl. 51 (1975), 621-628. · Zbl 0312.28015 · doi:10.1016/0022-247X(75)90112-2
[31] Swartz C.: Products of vector measures by means of Fubini’s theorem. Math. Slovaca 27(1977), 375-382. · Zbl 0373.28004
[32] Thomas E.: L’intégration par rapport a une mesure de Radon vectorielle. Ann. Inst. Fourier, Grenoble, 20 (1970), 59 L89. · Zbl 0195.06101 · doi:10.5802/aif.352
[33] Thomas E.: Totally summable functions with values in locally convex spaces. Measure theory. Lecture Notes in Math. 541, Springer-Verlag, Berlin 1976, 117-131. · Zbl 0357.46050
[34] White A. J.: Convolution of vector measures. Proc. Royal Soc. Edinburg, Ser. A 73 (1975), 117-135. · Zbl 0331.43002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.