Grunewald, Fritz J.; Segal, Daniel The solubility of certain decision problems in arithmetic and algebra. (English) Zbl 0431.20029 Bull. Am. Math. Soc., New Ser. 1, 915-918 (1979). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 10 Documents MSC: 20F10 Word problems, other decision problems, connections with logic and automata (group-theoretic aspects) 11U05 Decidability (number-theoretic aspects) 16P10 Finite rings and finite-dimensional associative algebras 11E57 Classical groups 20F18 Nilpotent groups Keywords:decision problems; isomorphism problem for nilpotent groups; conjugacy problem PDF BibTeX XML Cite \textit{F. J. Grunewald} and \textit{D. Segal}, Bull. Am. Math. Soc., New Ser. 1, 915--918 (1979; Zbl 0431.20029) Full Text: DOI OpenURL References: [1] Helmut Behr, Über die endliche Definierbarkeit verallgemeinerter Einheitengruppen, J. Reine Angew. Math. 211 (1962), 123 – 135 (German). · Zbl 0107.26202 [2] Armand Borel, Introduction aux groupes arithmétiques, Publications de l’Institut de Mathématique de l’Université de Strasbourg, XV. Actualités Scientifiques et Industrielles, No. 1341, Hermann, Paris, 1969 (French). · Zbl 0186.33202 [3] Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485 – 535. · Zbl 0107.14804 [4] J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs, vol. 13, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London-New York, 1978. · Zbl 0395.10029 [5] Fritz J. Grunewald, Solution of the conjugacy problem in certain arithmetic groups, Word problems, II (Conf. on Decision Problems in Algebra, Oxford, 1976), Stud. Logic Foundations Math., vol. 95, North-Holland, Amsterdam-New York, 1980, pp. 101 – 139. [6] Fritz J. Grunewald and Daniel Segal, A note on arithmetic groups, Bull. London Math. Soc. 10 (1978), no. 3, 297 – 302. · Zbl 0403.20030 [7] Fritz J. Grunewald and Daniel Segal, Conjugacy of subgroups in arithmetic groups, Proc. London Math. Soc. (3) 44 (1982), no. 1, 47 – 70. · Zbl 0477.20026 [8] P. Hall, Nilpotent groups, Queen Mary College, London, 1969. [9] A. Hurwitz, Die unimodularen Substitutionen in einem algebraischen Zahlkörper, Nachr. Gesellschaft Wiss. Göttingen, 1895. · JFM 26.0224.03 [10] C. Jordan, Mémoire sur l’équivalence des formes, J. École Polytech. 48 (1880), 112-150. [11] M. I. Kargapolov, Some questions in the theory of soluble groups, Proceedings of the Second International Conference on the Theory of Groups (Australian Nat. Univ., Canberra, 1973) Springer, Berlin, 1974, pp. 389 – 394. Lecture Notes in Math., Vol. 372. [12] H. Poincaré, Sur les formes cubiques ternaires et quaternaires, J. École Polytech. 51 (1882), 45-91. · JFM 15.0097.01 [13] R. A. Sarkisjan, On the conjugacy problem, Mat. Zametkie N1 and N6, 1979. (Russian) · Zbl 0413.12014 [14] R. A. Sarkisjan, Symposium on Group Theory in Tscherkasse, Uspehi Mat. Nauk (to appear) [15] Carl Ludwig Siegel, Zur Reduktionstheorie quadratischer Formen, Publications of the Mathematical Society of Japan, Vol. 5, The Mathematical Society of Japan, Tokyo, 1959 (German). · Zbl 0097.00901 [16] Richard G. Swan, Generators and relations for certain special linear groups, Advances in Math. 6 (1971), 1 – 77 (1971). · Zbl 0221.20060 [17] Alfred Tarski, A decision method for elementary algebra and geometry, University of California Press, Berkeley and Los Angeles, Calif., 1951. 2nd ed. · Zbl 0035.00602 [18] M. A. Taĭclin, The isomorphism problem for commutative semigroups, Mat. Sb. (N.S.) 93(135) (1974), 103 – 128, 152 (Russian). This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.