Burrage, Kevin; Butcher, J. C. Non-linear stability of a general class of differential equation methods. (English) Zbl 0431.65051 BIT, Nord. Tidskr. Inf.-behandl. 20, 185-203 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 11 ReviewsCited in 121 Documents MSC: 65L05 Numerical methods for initial value problems involving ordinary differential equations 65L07 Numerical investigation of stability of solutions to ordinary differential equations Keywords:stability analysis; nonlinear system of differential equations; multistep methods; multileg methods; Runge-Kutta methods; contractivity condition; G-stability; monotonic methods; algebraic stability; coercivity condition; study of error growth; non-linear stability analysis; error propagation PDFBibTeX XMLCite \textit{K. Burrage} and \textit{J. C. Butcher}, BIT, Nord. Tidskr. Inf.-behandl. 20, 185--203 (1980; Zbl 0431.65051) Full Text: DOI References: [1] K. Burrage and J. C. Butcher,Stability criteria for implicit Runge-Kutta methods, SIAM J. Numer. Anal. 16 (1979), 46–57. · Zbl 0396.65043 · doi:10.1137/0716004 [2] K. Burrage,High order algebraically stable Runge-Kutta methods, BIT 18 (1978), 373–383. · Zbl 0401.65049 · doi:10.1007/BF01932017 [3] J. C. Butcher,On the convergence of numerical solutions to ordinary differential equations, Math. Comp. 20 (1966), 1–10. · Zbl 0141.13504 · doi:10.1090/S0025-5718-1966-0189251-X [4] J. C. Butcher,The order of numerical methods for ordinary differential equations, Math. Comp. 27 (1973), 793–806. · Zbl 0278.65073 · doi:10.1090/S0025-5718-1973-0343620-7 [5] J. C. Butcher,A stability property of implicit Runge-Kutta methods, BIT 15 (1975), 358–361. · Zbl 0333.65031 · doi:10.1007/BF01931672 [6] G. J. Cooper,The order of convergence of general linear methods for ordinary differential equations, SIAM J. Numer. Anal. 15 (1978), 643–661. · Zbl 0398.65040 · doi:10.1137/0715043 [7] M. Crouzeix,Sur la B-stabilité des méthodes de Runge-Kutta, Numer. Math. 32 (1979), 75–82. · Zbl 0431.65052 · doi:10.1007/BF01397651 [8] G. Dahlquist,A special stability problem for linear multistep methods, BIT 3 (1963), 27–43. · Zbl 0123.11703 · doi:10.1007/BF01963532 [9] G. Dahlquist,On stability and error analysis for stiff non-linear problems, 1, Dept. of Information Processing, Royal Institute of Technology, Stockholm, Report NA 75.08. [10] G. Dahlquist,G-stability is equivalent to A-stability, BIT 18 (1978), 384–401. · Zbl 0413.65057 · doi:10.1007/BF01932018 [11] C. W. Gear,Numerical initial value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, N.J., 1971. · Zbl 1145.65316 [12] E. Hairer and G. Wanner,Multistep-multistage-multiderivative methods for ordinary differential equations, Computing 11 (1973), 287–303. · Zbl 0271.65048 · doi:10.1007/BF02252917 [13] E. Hairer and G. Wanner,On the Butcher group and general multi-value methods, Computing 13 (1974), 1–15. · Zbl 0293.65050 · doi:10.1007/BF02268387 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.