Cohomology of congruence subgroups of \(SL(n,Z)\). (English) Zbl 0438.20035


20H05 Unimodular groups, congruence subgroups (group-theoretic aspects)
20G10 Cohomology theory for linear algebraic groups
20G05 Representation theory for linear algebraic groups
57T10 Homology and cohomology of Lie groups
Full Text: DOI EuDML


[1] Ash, A.: Deformation retracts with lowest possible dimension of arithmetic quotients of selfadjoint homogeneous cones. Math. Ann.225, 69-76 (1977) · Zbl 0343.20026
[2] Soulé, C.: These, Université Paris VII
[3] Borel, A., Serre, J.-P.: Corners and arithmetic groups. Comm. Math. Helv.48, 436-491 (1973) · Zbl 0274.22011
[4] Ash, A., Rudolph, L.: The modular symbol and continued fractions in higher dimensions, Inv. Math.55, 241-250 (1979) · Zbl 0426.10023
[5] Gelbart, S., Jacquet, H.: A relation between automorphic forms on GL(2) and GL(3), Proc. Nat. Acad. Sci. USA73, 3348-3350 (1976) · Zbl 0373.22008
[6] Ash, A.: Cohomology of subgroups of finite index of SL(3,?) and SL(4,?). Bull. A.M.S.83, 367-368 (1977) · Zbl 0349.22009
[7] Soulé, C.: Cohomology of SL3(?). C.R. Acad. Sci. Paris280, Ser. A 251-254 (1975)
[8] Neubüser, J., Wondratschek, H., Bülow, R.: On crystallography in higher dimensions. I, II, III. Acta Cryst. A27, 517-535 (1971)
[9] Van der Waerden, B.L.: Reduktionstheorie der positiven quadratischen Formen. Acta Math.96, 265-309 (1956) · Zbl 0072.03601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.