Eisenbud, David Homological algebra of a complete intersection, with an application to group representations. (English) Zbl 0444.13006 Trans. Am. Math. Soc. 260, 35-64 (1980). Author’s abstract: Let \(R\) be a regular local ring, and let \( A=R/(x)\), where \(x\) is any nonunit of \(R\). We prove that every minimal free resolution of a finitely generated \(A\)-module becomes periodic of period 1 or 2 after at most \(\dim A\) steps, and we examine generalizations and extensions of this for complete intersections. Our theorems follow from the properties of certain universally defined endomorphisms of complexes over such rings. Reviewer: David Eisenbud Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 24 ReviewsCited in 322 Documents MSC: 13D99 Homological methods in commutative ring theory 13H10 Special types (Cohen-Macaulay, Gorenstein, Buchsbaum, etc.) 14M10 Complete intersections 13D25 Complexes (MSC2000) 13H05 Regular local rings Keywords:complete intersection; periodicity of minimal free resolution; regular local ring; matrix factorization PDFBibTeX XMLCite \textit{D. Eisenbud}, Trans. Am. Math. Soc. 260, 35--64 (1980; Zbl 0444.13006) Full Text: DOI References: [1] J. Alperin, Resolutions for finite groups, Internat. Sympos. on Theory of Finite Groups (Sapporo, Japan, 1974). [2] J. L. Alperin, Periodicity in groups, Illinois J. Math. 21 (1977), no. 4, 776 – 783. · Zbl 0389.20004 [3] Hyman Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8 – 28. · Zbl 0112.26604 · doi:10.1007/BF01112819 [4] N. Bourbaki, Éléments de mathématique. Algèbre. Chapitres 1 à 3, Hermann, Paris, 1970 (French). · Zbl 0211.02401 [5] David A. Buchsbaum and David Eisenbud, Lifting modules and a theorem on finite free resolutions, Ring theory (Proc. Conf., Park City, Utah, 1971) Academic Press, New York, 1972, pp. 63 – 74. · Zbl 0248.13011 [6] -, Algebra structures on resolutions, and some structure theorems for ideals of height 3, Amer. J. Math. (1977). [7] -, Generic free resolutions and a family of generically perfect ideals, Advances in Math. (1976). [8] David A. Buchsbaum and David Eisenbud, What annihilates a module?, J. Algebra 47 (1977), no. 2, 231 – 243. · Zbl 0372.13002 · doi:10.1016/0021-8693(77)90223-X [9] Jon F. Carlson, The dimensions of periodic modules over modular group algebras, Illinois J. Math. 23 (1979), no. 2, 295 – 306. · Zbl 0388.16008 [10] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. II, Inst. Hautes Études Sci. Publ. Math. 24 (1965), 231 (French). · Zbl 0135.39701 [11] Leonard Evens, The cohomology ring of a finite group, Trans. Amer. Math. Soc. 101 (1961), 224 – 239. · Zbl 0104.25101 [12] Tor Holtedahl Gulliksen, A proof of the existence of minimal \?-algebra resolutions, Acta Math. 120 (1968), 53 – 58. · Zbl 0157.34603 · doi:10.1007/BF02394606 [13] Tor H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167 – 183. · Zbl 0292.13009 · doi:10.7146/math.scand.a-11518 [14] Tor H. Gulliksen and Gerson Levin, Homology of local rings, Queen’s Paper in Pure and Applied Mathematics, No. 20, Queen’s University, Kingston, Ont., 1969. · Zbl 0208.30304 [15] Irving Kaplansky, Commutative rings, Revised edition, The University of Chicago Press, Chicago, Ill.-London, 1974. · Zbl 0296.13001 [16] G. Levin and W. V. Vasconcelos, Homological dimensions and Macaulay rings, Pacific J. Math. 25 (1968), 315 – 323. · Zbl 0161.03903 [17] Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. · Zbl 0441.13001 [18] V. Mehta, Thesis, University of California, Berkeley, Calif., 1976. [19] Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers a division of John Wiley & Sons New York-London, 1962. · Zbl 0123.03402 [20] Hans-Joachim Nastold, Zur Serreschen Multiplizitätstheorie in der arithmetischen Geometrie, Math. Ann. 143 (1961), 333 – 343 (German). · Zbl 0097.02303 · doi:10.1007/BF01470614 [21] J. P. Serre, Algèbre local-multiplicité, 3rd ed., Lecture Notes in Math., vol. 11, Springer-Verlag, New York, 1975. [22] Jack Shamash, The Poincaré series of a local ring, J. Algebra 12 (1969), 453 – 470. · Zbl 0189.04004 · doi:10.1016/0021-8693(69)90023-4 [23] John Tate, Homology of Noetherian rings and local rings, Illinois J. Math. 1 (1957), 14 – 27. · Zbl 0079.05501 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.