Rosenblatt, M. Limit theorems for Fourier transforms of functionals of Gaussian sequences. (English) Zbl 0447.60016 Z. Wahrscheinlichkeitstheor. Verw. Geb. 55, 123-132 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 26 Documents MSC: 60F05 Central limit and other weak theorems 60G15 Gaussian processes 60G10 Stationary stochastic processes Keywords:nonlinear functions of stationary Gaussian sequences PDFBibTeX XMLCite \textit{M. Rosenblatt}, Z. Wahrscheinlichkeitstheor. Verw. Geb. 55, 123--132 (1981; Zbl 0447.60016) Full Text: DOI References: [1] Brillinger, D., Time series: data analysis and theory (1975), New York: Holt, Rinehart and Winston, New York · Zbl 0321.62004 [2] Dobrushin, R. L., Gaussian and their subordinated self-similar random generalized fields, Ann. Probab., 7, 1-28 (1979) · Zbl 0392.60039 [3] Dobrushin, R. L.; Major, P., Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 50, 27-52 (1979) · Zbl 0397.60034 [4] Major, P.: Limit theorems for nonlinear functionals of Gaussian sequences. [To be published in Z. Wahrscheinlichkeitstheorie verw. Gebiete] · Zbl 0444.60028 [5] Rosenblatt, M.: Independence and dependence, Proc. 4th Sympos. Math. Statist. Probab. 431-443. Univ. California (1961) · Zbl 0105.11802 [6] Rosenblatt, M., Some limit theorems for partial sums of quadratic forms in stationary Gaussian variables, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 49, 125-132 (1979) · Zbl 0388.60048 [7] Taqqu, M. S., Weak convergence to fractional Brownian motion and to the Rosenblatt process, Z. Wahrscheinlichkeitstheorie verw. Gebiete, 31, 287-302 (1975) · Zbl 0303.60033 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.