Brézis, Haïm; Gallouet, T. Nonlinear Schrödinger evolution equations. (English) Zbl 0451.35023 Nonlinear Anal., Theory Methods Appl. 4, 677-681 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 6 ReviewsCited in 271 Documents MSC: 35J10 Schrödinger operator, Schrödinger equation 35K55 Nonlinear parabolic equations 35A05 General existence and uniqueness theorems (PDE) (MSC2000) 46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems Keywords:nonlinear Schrödinger evolution equations; global solutions; Sobolev embedding; interpolation inequality PDF BibTeX XML Cite \textit{H. Brézis} and \textit{T. Gallouet}, Nonlinear Anal., Theory Methods Appl. 4, 677--681 (1980; Zbl 0451.35023) Full Text: DOI OpenURL References: [1] Baillon, J.B.; Cazenave, T.; Figueira, M., Equation de Schrödinger nonlinéare, C.r. acad. sci., Paris, 284, 869-872, (1977) · Zbl 0349.35048 [2] C{\scAZENAVE} T., Equations de Schrödinger nonlinéares, Proc. Roy. Edinburgh (to appear). [3] J. G{\scINIBRE} & V{\scELO} G., on a class of nonlinear Schrödinger equations. [4] Glassey, R.T., On the blowing up of solutions to the Cauchy problem for the nonlinear Schrödinger equation, J. math. phys., 18, 1794-1979, (1977) · Zbl 0372.35009 [5] Lin, J.E.; Strauss, W.A., Decay and scattering of solutions of a nonlinear schrd̈inger equation, J. funct. anal., 30, 245-263, (1978) · Zbl 0395.35070 [6] Nirenberg, L., On elliptic partial differential equations, Ann. sci. norm. sup. Pisa, 13, 115-162, (1959) · Zbl 0088.07601 [7] Segal, I., Nonlinear semi-groups, Ann. math., 78, 339-364, (1963) · Zbl 0204.16004 [8] Strauss, W.A., The nonlinear Schrödinger equation, (), 452-465 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.