Vardulakis, Antonis I. G. On infinite zeros. (English) Zbl 0454.93016 Int. J. Control 32, 849-866 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 12 Documents MSC: 93C05 Linear systems in control theory 93C35 Multivariable systems, multidimensional control systems 93B10 Canonical structure Keywords:high gain feedback; strictly proper transfer function; decoupling problem; infinite zeros PDF BibTeX XML Cite \textit{A. I. G. Vardulakis}, Int. J. Control 32, 849--866 (1980; Zbl 0454.93016) Full Text: DOI OpenURL References: [1] KOUVARITAKIS B., Int. J. Control 29 pp 393– (1979) · Zbl 0396.93033 [2] KOUVARITAKIS B., Int. J. Control 23 pp 297– (1976) · Zbl 0317.93053 [3] LUENBERGER D. G., I.E.E.E. Trans, autom. Control 12 pp 290– (1967) [4] MCMILLAN B., Bell Syst. Tech. J. 31 pp 541– (1952) [5] MORGAN B. S., Proc. J ACC pp 468–72– (1964) [6] MORSE A. S., SI AM J. Control 11 pp 446– (1973) · Zbl 0259.93011 [7] OWENS D. H., Int. J. Control 28 pp 187– (1978) · Zbl 0399.93027 [8] POSTLETHWAITE I., A Complex Variable Approach. to the Analysis of Linear Multivariable Feedback Systems (1979) · Zbl 0402.93001 [9] PUGH A. C., Int. J. Control 30 pp 213– (1979) · Zbl 0416.15013 [10] ROSENBROCK H. H., State Space and Multivariable Theory (1970) [11] VARDULAKIS A. I. G., On the Structure and Computation of Maximal (A, B)-.invariant subspaces (1979) [12] VARDULAKIS A. I. G., I.E.E.E. Trans, autom. Control 24 pp 362– (1979) · Zbl 0397.93019 [13] VERGHESE , G. , 1978 , Ph.D. Thesis , Electrical Engineering Dept., Stanford University , Stanford , California , U.S.A. [14] VERGHESE G., Int J. Control 29 pp 1077– (1979) · Zbl 0413.93046 [15] VERGHESE G., Int. J. Control 30 pp 235– (1979) · Zbl 0418.93016 [16] WOLOVICH W. A., I.E.E.E. Trans, autom Control 18 pp 544– (1973) · Zbl 0266.93017 [17] WOLOVICH W. A., SIAM J. Control 7 pp 437– (1969) · Zbl 0228.93004 [18] WONHAM W. M., Linear Multivariable Control, A Geometric Approach (1974) · Zbl 0314.93007 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.