×

Resolvent expansions of matrices and applications. (English) Zbl 0468.15002


MSC:

15A09 Theory of matrix inversion and generalized inverses
15A18 Eigenvalues, singular values, and eigenvectors
15A99 Basic linear algebra
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Berman, A.; Plemmons, R.J., Nonnegative matrices in the mathematical sciences, (1979), Academic New York · Zbl 0484.15016
[2] Blackwell, D., Discrete dynamic programming, Ann. math. statist., 33, 719-726, (1962), (1962) · Zbl 0133.12906
[3] B. C. Eaves and U. G. Rothblum, Homotopies for piecewise linear equations in ordered fields with applications to an invariant curve theorem, in preparation.
[4] Gantmacher, F.R., The theory of matrices, (1971), K.A. Hirsh Chelsea, New York, trans. from Russian by · Zbl 0085.01001
[5] Halmos, P.R., Finite dimensional vector spaces, (1958), Van Nostrand Princeton, N.J · Zbl 0107.01404
[6] Hardy, G., Divergent series, (1949), Clarendon Oxford · Zbl 0032.05801
[7] Jeroslow, R.G., Linear programs dependent on a single parameter, Discrete math., 6, 119-140, (1973) · Zbl 0283.90029
[8] Kato, T., Pertubation theory for linear operators, (1966), Springer New York
[9] Knopp, K., Theory and applications of infinite series, (1951), Hafner New York, (transl. by R. C. H. Young)
[10] Meyer, C.D., Limits and the index of a square matrix, SIAM J. appl. math., 26, 469-478, (1974) · Zbl 0249.15004
[11] Meyer, C.D., An alternative expression for the Mean first passage matrix, Linear algebra and appl., 22, 41-47, (1978) · Zbl 0401.60063
[12] Meyer, C.D., The condition of a finite Markov chain and pertubation bounds for the limiting probabalities, 24, (1979), unpublished manuscript
[13] Meyer, C.D.; Rose, N.J., The index and Drazin inverse of block triangular matrices, SIAM J. appl. math., 33, 1-7, (1977) · Zbl 0355.15009
[14] Meyer, C.D.; Stadelmaier, M.W., Singular M-matrices and inverse positivity, Linear algebra and appl., 22, 139-156, (1978) · Zbl 0411.15006
[15] Miller, B.L.; Veinott, A.F., Discrete dynamic programming with a small interest rate, Ann. math. statist., 40, 366-370, (1969) · Zbl 0175.47302
[16] Plemmons, R.J., M-matrices leading to semi-convergent splittings, Linear algebra and appl., 15, 243-252, (1976) · Zbl 0358.15016
[17] Rothblum, U.G., Normalized Markov decision chains I: sensitive discount optimality, Operations res., 23, 785-795, (1975) · Zbl 0318.90023
[18] Rothblum, U.G., A representation of the Drazin inverse and characterizations of the index, SIAM J. applied math., 31, 646-648, (1976) · Zbl 0355.15008
[19] Rothblum, U.G.; Wets, Roger J.-B., A computation of the eigenprojection of a nonnegative matrix at its spectral radius, Mathematical programming studies 6, stochastic systems: modeling, identification and optimization II, 188-201, (1976)
[20] Rothblum, U.G., An index classification of M-matrices, Linear algebra and appl., 23, 1-12, (1979) · Zbl 0402.15009
[21] Rothblum, U.G., Expansion of partial sums of matrix powers, SIAM rev., 23, 2, (April 1981)
[22] U. G. Rothblum, and A. F. Veinott, Branching Markov decision chains, in preparation.
[23] Varga, R.S., Matrix iterative analysis, (1962), Prentice-Hall Englewood Cliffs, N.J · Zbl 0133.08602
[24] Vandergraft, J.S., Spectral properties of matrices which have invariant cones, SIAM J. appl. math., 16, 1208-1222, (1968) · Zbl 0186.05701
[25] Veinott, A.F., Discrete dynamic programming with sensitive discount optimality criteria, Ann. math. statist., 40, 1635-1660, (1969) · Zbl 0183.49102
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.