Streb, Walter Über einen Satz von Herstein und Nakayama. (German) Zbl 0474.16024 Rend. Sem. Mat. Univ. Padova 64, 159-171 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 10 Documents MSC: 16U70 Center, normalizer (invariant elements) (associative rings and algebras) 16Rxx Rings with polynomial identity 16D70 Structure and classification for modules, bimodules and ideals (except as in 16Gxx), direct sum decomposition and cancellation in associative algebras) Keywords:F-algebras; (F,beta)-rings; subdirect product of division rings; Jacobson radical; simple right Ore domain Citations:Zbl 0051.025; Zbl 0101.025; Zbl 0251.16021 PDF BibTeX XML Cite \textit{W. Streb}, Rend. Semin. Mat. Univ. Padova 64, 159--171 (1981; Zbl 0474.16024) Full Text: Numdam EuDML References: [1] P.M. Cohn , Algebra , vol. 2 , John Wiley & Sons , London - New York - Sydney - Toronto , 1977 . MR 530404 | Zbl 0341.00002 · Zbl 0341.00002 [2] I.N. Herstein , The structure of a certain class of rings , Amer. J. Math. , 75 ( 1953 ), pp. 864 - 871 . MR 58580 | Zbl 0051.02501 · Zbl 0051.02501 [3] I.N. Herstein , Rings with Involution , University of Chicago Press , Chicago , 1976 . MR 442017 | Zbl 0343.16011 · Zbl 0343.16011 [4] S. Lang , Algebra , Addison-Wesley Publishing Company , Reading, Massachusetts - Menlo Park, California - London - Sydney - Manila , 1971 . MR 197234 | Zbl 0193.34701 · Zbl 0193.34701 [5] J.E. McLaughlin - A. Rosfnberg , Zero divisors and commutativity of rings , Proc. Amer. Math. Soc. , 4 ( 1953 ), pp. 203 - 211 . MR 53081 | Zbl 0051.02401 · Zbl 0051.02401 [6] T. Nakayama , On the commutativity of certain division rings, Cand . J. Math. , 5 ( 1953 ), pp. 242 - 244 . MR 53083 | Zbl 0051.02603 · Zbl 0051.02603 [7] T. Nakayama , A remark on the commutativity of algebraic rings , Nagoya Mat. J. 14 ( 1959 ), pp. 39 - 44 . Article | MR 101261 | Zbl 0101.02503 · Zbl 0101.02503 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.