Roe, P. L. Approximate Riemann solvers, parameter vectors, and difference schemes. (English) Zbl 0474.65066 J. Comput. Phys. 43, 357-372 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 27 ReviewsCited in 1758 Documents MSC: 65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs 65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs 35L65 Hyperbolic conservation laws 35L60 First-order nonlinear hyperbolic equations 76N15 Gas dynamics (general theory) Keywords:approximate Riemann solvers; parameter vectors PDF BibTeX XML Cite \textit{P. L. Roe}, J. Comput. Phys. 43, 357--372 (1981; Zbl 0474.65066) Full Text: DOI References: [1] Roe, P. L., (Proceedings, Seventh Int. Conf. Num. Meth. Fluid Dyn. (1981), Springer-Verlag: Springer-Verlag New York/Berlin) [2] Oleinik, O. A., Trans. Amer. Math. Soc. Sect. 2, 33, 285 (1963) [3] Lax, P. D., Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves (1972), SIAM: SIAM Philadelphia [4] Godunov, S. K., Mat. Sb., 47, 271 (1959), also as US JPRS translation 7226 (1960) [5] Richtmyer, R. D.; Morton, K. W., Difference Methods for Initial-Value Problems (1967), Interscience: Interscience New York · Zbl 0155.47502 [6] Holt, M., Numerical Methods in Fluid Dynamics (1977), Springer-Verlag: Springer-Verlag New York/Berlin · Zbl 0357.76009 [7] Van Leer, B., J. Comput. Phys., 32, 101 (1979) [8] Glimm, J., Comm. Pure Appl. Math., 18, 697 (1965) [9] Chorin, A. J., J. Comput. Phys., 22, 517 (1976) [10] Harten, A.; Lax, P. D., SIAM J. Numer. Anal., 18, 289 (1981) [11] Sells, C. C.L., RAE TR 80065 (1980) [13] Viviand, H., (Proceedings, Seventh Int. Conf. Num. Meth. Fluid Dyn. (1981), Springer-Verlag: Springer-Verlag New York/Berlin) [14] Sod, G. A., J. Comput. Phys., 27, 1 (1978) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.