×

Iteration and the solution of functional equations for functions analytic in the unit disk. (English) Zbl 0476.30017


MSC:

30D05 Functional equations in the complex plane, iteration and composition of analytic functions of one complex variable
39B12 Iteration theory, iterative and composite equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Krishna B. Athreya and Peter E. Ney, Branching processes, Springer-Verlag, New York-Heidelberg, 1972. Die Grundlehren der mathematischen Wissenschaften, Band 196. · Zbl 1070.60001
[2] I. N. Baker, Fractional iteration near a fixpoint of multiplier 1, J. Austral. Math. Soc. 4 (1964), 143 – 148. · Zbl 0134.05402
[3] Earl Berkson and Horacio Porta, Semigroups of analytic functions and composition operators, Michigan Math. J. 25 (1978), no. 1, 101 – 115. · Zbl 0382.47017
[4] G. T. Cargo, Fixed points and ideal fixed points of holomorphic functions, Notices Amer. Math. Soc. 25 (1978), A636.
[5] A. Denjoy, Sur l’itération des fonctions analytiques, C. R. Acad. Sci. Paris 182 (1926), 255-257. · JFM 52.0309.04
[6] James Dugundji, Topology, Allyn and Bacon, Inc., Boston, Mass., 1966. · Zbl 0144.21501
[7] P. Fatou, Sur les équations fonctionnelles, Bull. Soc. Math. France 47 (1919), 161-271; 48 (1920), 33-94, 208-314. · JFM 47.0921.02
[8] Theodore E. Harris, The theory of branching processes, Die Grundlehren der Mathematischen Wissenschaften, Bd. 119, Springer-Verlag, Berlin; Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963. · Zbl 1037.60001
[9] Herbert Kamowitz, The spectra of composition operators on \?^{\?}., J. Functional Analysis 18 (1975), 132 – 150. · Zbl 0295.47003
[10] S. Karlin and J. McGregor, Spectral theory of branching processes, I, II, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 5 (1966), 6-33, 34-54. · Zbl 0139.33804
[11] Samuel Karlin and James McGregor, On the spectral representation of branching processes with mean one, J. Math. Anal. Appl. 21 (1968), 485 – 495. · Zbl 0164.47001
[12] Samuel Karlin and James McGregor, Embeddability of discrete time simple branching processes into continuous time branching processes, Trans. Amer. Math. Soc. 132 (1968), 115 – 136. · Zbl 0159.46102
[13] Samuel Karlin and James McGregor, Embedding iterates of analytic functions with two fixed points into continuous groups, Trans. Amer. Math. Soc. 132 (1968), 137 – 145. · Zbl 0157.12502
[14] G. Koenigs, Recherches sur les intégrales de certaines équations fonctionnelles, Ann. Sci. École Norm. Sup. (3) 1 (1884), 3 – 41 (French). · JFM 16.0376.01
[15] M. Kuczma, On the Schroeder equation, Roxprawy Mat. 34 (1963). · Zbl 0121.33703
[16] Rolf Nevanlinna, Analytic functions, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. · Zbl 0199.12501
[17] K. Noshiro, On the theory of schlicht functions, J. Fac. Sci. Hokkaido Univ. Jap. (1) 2 (1934-1935), 129-155. · Zbl 0010.26305
[18] R. C. Penney, conversation with the author, 1979.
[19] Christian Pommerenke, Über die Subordination analytischer Funktionen, J. Reine Angew. Math. 218 (1965), 159 – 173 (German). · Zbl 0184.30601
[20] -, On the iteration of analytic functions in a half plane. I, J. London Mat. Soc. (2) 19 (1979), 439-447. · Zbl 0398.30014
[21] E. Schroeder, Über itierte Funktionen, Math. Ann. 3 (1871), 296-322.
[22] G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203 – 258. · Zbl 0145.07903
[23] M. Tsuji, Potential theory in modern function theory, Maruzen Co., Ltd., Tokyo, 1959. · Zbl 0087.28401
[24] Stefan E. Warschawski, On the higher derivatives at the boundary in conformal mapping, Trans. Amer. Math. Soc. 38 (1935), no. 2, 310 – 340. · Zbl 0014.26707
[25] J. Wolff, Sur l’itération des fonctions, C. R. Acad. Sci. Paris 182 (1926), 42-43, 200-201. · JFM 52.0309.02
[26] -, L’intégrale d’une fonction holomorphe et a partie reelle positive dans un demi plan est univalente, C. R. Acad. Sci. Paris 198 (1934), 1209-1210. · JFM 60.0282.01
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.