Lucchetti, R.; Patrone, F. A characterization of Tyhonov well-posedness for minimum problems, with applications to variational inequalities. (English) Zbl 0479.49025 Numer. Funct. Anal. Optimization 3, 461-476 (1981). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 1 ReviewCited in 79 Documents MSC: 49M99 Numerical methods in optimal control 49J45 Methods involving semicontinuity and convergence; relaxation 49J40 Variational inequalities Keywords:well-posed minimizing problems; minimizing sequence; level sets Citations:Zbl 0381.90105 PDF BibTeX XML Cite \textit{R. Lucchetti} and \textit{F. Patrone}, Numer. Funct. Anal. Optim. 3, 461--476 (1981; Zbl 0479.49025) Full Text: DOI OpenURL References: [1] Aubin, J.P. 1979. ”Mathematical Methods of Game and Economic Theory”. Amsterdam: North-Holland. · Zbl 0452.90093 [2] Ekeland I., Bull. Amex. Math. Soc. (N.80) 1 (1979) [3] Bkeland I., ”Convex Analysis and Variational Problems” (1976) [4] Furi M., J. Optim. Theoiy Appl 5 (1970) [5] Kinderlehrer, D. and Stampaschia, G. 1980. ”An Introductionto Variational Inequalities and their Applications”. New York: Academic Press. [6] Iiucchetti R., submitted to J, Math. Anal. Appl. (1980) [7] Mosco, U. 1973. ”An introduction to the approximate solution of variational inequalities”. Home: Cremonese. C.I.M.B. Course 1971 · Zbl 0266.49005 [8] Tyhonov A. N., U.S.S.R. Computational Math, and Math. Phys. 6 (4) pp 28– (1966) · Zbl 0212.23803 [9] Zolezzi T., Approssimaaioni e perturbàzioni diproblemi di minimo [10] Zolezzi T., Appl. Math. Optim. 4 (4) (1978) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.