Chow, Shui-Nee; Hale, Jack K. Methods of bifurcation theory. (English) Zbl 0487.47039 Grundlehren der Mathematischen Wissenschaften, Bd. 251. New York - Berlin-Heidelberg: Springer-Verlag. XV, 515 p. DM 128.00; $ 59.60 (1982). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 10 ReviewsCited in 409 Documents MSC: 47J05 Equations involving nonlinear operators (general) 47-02 Research exposition (monographs, survey articles) pertaining to operator theory 34Cxx Qualitative theory for ordinary differential equations 35Bxx Qualitative properties of solutions to partial differential equations 47A55 Perturbation theory of linear operators 47Hxx Nonlinear operators and their properties 58C15 Implicit function theorems; global Newton methods on manifolds 37J35 Completely integrable finite-dimensional Hamiltonian systems, integration methods, integrability tests 37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.) Keywords:qualitative theory of differential equations; bifurcation surface; Euler- Bernoulli problem of the buckling rod; Hopf bifurcation phenomenon; alternative method; Weierstrass and Malgrange preparation theorems; Newton polygon method; transversality; Sard’s theorem; topological degree; index; theory of Ljusternik-Schnirelmann; implicit function theorem; static bifurcation theory; variational theory; boundary value problems; Kármán and Duffing equations; dynamic bifurcation theory; normal forms; perturbation of spectra PDF BibTeX XML OpenURL