Geller, Daryl Local solvability and homogeneous distributions on the Heisenberg group. (English) Zbl 0488.22020 Commun. Partial Differ. Equations 5, 475-560 (1980). Page: −5 −4 −3 −2 −1 ±0 +1 +2 +3 +4 +5 Show Scanned Page Cited in 2 ReviewsCited in 16 Documents MSC: 22E25 Nilpotent and solvable Lie groups 47F05 General theory of partial differential operators 35A07 Local existence and uniqueness theorems (PDE) (MSC2000) 35B65 Smoothness and regularity of solutions to PDEs Keywords:Heisenberg group; invariant differential operators; local solvability; representation theory PDF BibTeX XML Cite \textit{D. Geller}, Commun. Partial Differ. Equations 5, 475--560 (1980; Zbl 0488.22020) Full Text: DOI OpenURL References: [1] Geller D., Schwartz Space, to appear, J. Func. Anal. (1964) [2] Folland G. B., Arkiv. f. Mat., 13 pp 161– (1975) · Zbl 0312.35026 [3] Folland G. B., Comm. pure appl. math. 27 pp 429– (1974) · Zbl 0293.35012 [4] Geller D., Proc. Natl. Acad. Sci. USA 74 (4) pp 1328– (1977) · Zbl 0351.43012 [5] Geller D., Proc. Symp. Pure Math. 35 [6] Greiner P. C., Proc. Natl. Acad. Sci. USA 72 (9) pp 3287– (1975) · Zbl 0308.35017 [7] Grusin V. V., Mat. Sbornik 83 pp 456– (1970) [8] Lewy H., Ann. Math. 66 pp 155– (1957) · Zbl 0078.08104 [9] Miller K., to appear [10] Tartakoff. D., Proc, Natl. Acad. Sci. USA 75 (7) pp 3027– (1978) · Zbl 0384.35020 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.