×

A model for hysteresis of distributed systems. (English) Zbl 0494.35052


MSC:

35K60 Nonlinear initial, boundary and initial-boundary value problems for linear parabolic equations
35D05 Existence of generalized solutions of PDE (MSC2000)
35A35 Theoretical approximation in context of PDEs
93C20 Control/observation systems governed by partial differential equations
35R35 Free boundary problems for PDEs

Citations:

Zbl 0406.93032
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] P.Ciarlet,The finite elements method, North Holland, 1978. · Zbl 0383.65058
[2] Duvaut, G.; Lions, J. L., Inequalities in mechanics and physics, Grund. Math. Wiss.,219 (1976), Berlin: Springer, Berlin · Zbl 0331.35002
[3] K.Glashoff - J.Sprekels,An application of Glicksberg’s theorem to set-valued integral equations arising in the theory of thermostats, S.I.A.M. J. Math. Anal., May 1981. · Zbl 0472.45004
[4] K.Glashoff - J.Sprekels,The regulation of temperature by thermostats and set-valued integral equations, to appear on J. Int. Equ. · Zbl 0507.45010
[5] Krasnosel’Skii, M. A., Equations with nonlinearities of hysteresis type (Russian), VII, Int. Konf. Nichtlineare Schwing., Berlin, I, 1 (1975)
[6] Krasnosel’Skii, M. A.; Pokrovskii, A. V.; Akilov, G. P., Operators representing non linearities of hysteresis type (Russian), Theory of operators in functional spaces (1977), Novosibirsk: Nauka, Novosibirsk
[7] Lions, J. L., Quelques méthodes de résolution des problèmes aux limites non linéaires (1969), Paris: Dunod, Gauthier-Villars, Paris · Zbl 0189.40603
[8] Lions, J. L.; Magenes, E., Non homogeneous boundary value problems, Grund. Math. Wiss.,181 (1972), Berlin: Springer, Berlin · Zbl 0223.35039
[9] Perucca, E., Fisica generale e sperimentale (1963), Torino: U.T.E.T., Torino
[10] A.Visintin,Phase transitions with delay, to appear, on « Control and Cybernetics ».
[11] Visintin, A., Hystérésis dans les systèmes distribués, C.R. Acad. Sci. Paris, 293, 625-628 (1981) · Zbl 0494.35051
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.