×

La rélation de Poisson pour l’équation des ondes dans un ouvert non borne. Application à la théorie de la diffusion. (French) Zbl 0496.35067


MSC:

35P25 Scattering theory for PDEs
35L05 Wave equation
Full Text: DOI

References:

[1] Colin De Verdiere V., Compositio Math 27 pp 150– (1973)
[2] Chazarain J, Inventiones math 26 pp 65– (1974) · Zbl 0281.35028 · doi:10.1007/BF01418788
[3] Duistermaat J.J, Inventiones Math 29 pp 39– (1975) · Zbl 0307.35071 · doi:10.1007/BF01405172
[4] Andersson K., Inventiones math 41 pp 23– (1977) · Zbl 0373.35053 · doi:10.1007/BF01403048
[5] Guillemin V., Advances in math 32 pp 204– (1979) · Zbl 0421.35082 · doi:10.1016/0001-8708(79)90042-2
[6] Ikawa M., Preprint du département de Mathématiques de la Faculté des Sciences de l’Universitéd’0saka (1980)
[7] Ralsion J., CPAM 24 pp 571– (1971)
[8] Lax P., CPAM 25 pp 85– (1972)
[9] Beale T., CPAM 26 pp 349– (1973)
[10] Bardos C., CRAS pp 495– (1980)
[11] Bardos C., Juin (1980)
[12] Lax P., Scattering the ory (1978)
[13] Melrose R., C.P.A.M. 31 pp 393– (1978)
[14] Treves F., Basic linear partial differential equations (1975)
[15] Yosida, K. 1968.Functional Analysis, 279Springer. · Zbl 0152.32102
[16] Lax P., Suppl.Studies 3 pp 197– (1978)
[17] Krein M.G., Math. Sb. 33 (75) pp 597– (1953)
[18] Krein M.G., Dokl, Akad.Nank. SSSR 144 pp 268– (1962)
[19] Birman M. Sh., Dokl. Akad. Nank. SSSR 144 pp 475– (1962)
[20] Jensen A., Com. P.D.E 3 (12) pp 1165– (1978) · Zbl 0419.35067 · doi:10.1080/03605307808820089
[21] Kato T., Perturbation theory for linear operators (1966) · Zbl 0148.12601 · doi:10.1007/978-3-642-53393-8
[22] Goherg I.C., A.M.S. Providence 18 (1968)
[23] Agmon S., van Nostrand (1965)
[24] Ralston J., C.P.A.M 22 pp 807– (1969)
[25] Guillemin V., A.M.S (1977)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.