Oscillator-like unitary representations of non-compact groups with a Jordan structure and the non-compact groups of supergravity. (English) Zbl 0498.22019


22E70 Applications of Lie groups to the sciences; explicit representations
22E60 Lie algebras of Lie groups
81R10 Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, \(W\)-algebras and other current algebras and their representations
17A40 Ternary compositions
17B60 Lie (super)algebras associated with other structures (associative, Jordan, etc.)
Full Text: DOI


[1] Cremmer, E., Julia, B.: The N = 8 supergravity theory, I. The Lagrangian. Phys. Lett.80B, 48 (1978); ?The SO(8) Supergravity,? Nucl. Phys.B159, 141 (1979)
[2] Cremmer, E., Scherk, J., Ferrara, S.: ?SU(4) invariant supergravity theory.? Phys. Lett.74B, 61 (1978)
[3] For earlier references and for a formulation showing the connection between generalized ? models and extended supergravity theories in a clear form see, Gaillard, M. K., Zumino, B.: CERN preprint TH. 3078 (1981)
[4] Ellis, J., Gaillard, M. K., Maiani, L., Zumino, B.: In Unification of the fundamental particle interactions by Ferrara, S., Ellis, J., van Nieuwenhuizen, P., (eds.), N.Y.: Plenum Press, 1980, 69; Ellis, J., Gaillard, M. K., and Zumino, B.: A grand unified theory obtained from supergravity. Phys. Lett.94B, 343 (1980)
[5] Ellis, J., Gaillard, M. K., Zumino, B.: CERN reprint TH. 3152 (1981)
[6] Haber, H. E., Hinchliffe, I., Rabinovici, E.: ’The CP N-1 model with unconstrained variables. Nucl. Phys.B172, 458 (1980) · doi:10.1016/0550-3213(80)90178-9
[7] Zumino, B.: Proc. 1980 Madison Inst. Conf. on High Energy Physics, Durand, L., Pondrom, L. G. (eds.), N.Y.: A.I.P., 1981, p. 964; and Superspace and supergravity. Hawking, S. W., Rocek, M. (eds.), Cambridge.: Cambridge University Press 1981, p. 423
[8] Derendinger, J. P., Ferrara, S., Savoy, C. A.: CERN preprint TH. 3025 (1981), unpublished and ?Flavour and Superunification,? Nucl. Phys.B188, 77 (1981); Kim, J. E., Song, H. S.: Seoul National University preprint (1981) · doi:10.1016/0550-3213(81)90106-1
[9] Günaydin, M., Saçlioglu, C.: Bosonic construction of the Lie algebras of some Non-compact groups appearing in supergravity theories and their oscillator-like unitary representations. Phys. Lett.108B, 180 (1982)
[10] Jacobson, N.: Am. J. Math.71, 149 (1949) and Structure and representations of Jordan algebras. Ann. Math. Soc. Colloq. Publ. (1968) · Zbl 0218.17010
[11] Hirzebruch, U.: Math. Zeitschrift115, 371 (1970) · doi:10.1007/BF01131310
[12] For an extensive list of references see Wybourne, B. G.: Classical groups for physicists. New York: J. Wiley and Sons, 1974. For further references see Ref. [13]
[13] Group Theory and its applications, Loebl, E. M., (ed.), New York: Academic Press, 1968
[14] Kantor, I. L.: Trudy Sem. Vector. Anal.16, 407 (1972) (Russian)
[15] Bars, I., Günaydin, M.: (unpublished)
[16] This is because supersymmetry and unitarity together lead in general to reducible representations. For details see Ref. [35].
[17] Gell-Mann, M.: (private communication)
[18] For an outline of Gell-Mann’s method, see Hermann, R.: Lie groups for physicists. New York: Benjamin. 1966, p. 182
[19] Gürsey, F.: Representations of some non-compact groups related to the Pioncaré Group, Yale University mimeographed notes (1971); Bars, I., Gürsey, F.: Operator treatment of the Gellfand-Naimark basis for SL(2.C). J. Math. Phys.13, 131 (1972); Gürsey, F., Orfanidis, S.: ?Conformal invariance and field theory in two dimensions. Phys. Rev.D7, 2412 (1973)
[20] Tits, J.: Nederl. Akad. van Wetenschappen65, 530 (1962)
[21] Koecher, M.: Am. J. Math.89, 787 (1967) · Zbl 0209.06801 · doi:10.2307/2373242
[22] Bars, I., Günaydin, M.: Construction of Lie algebras and Lie superalgebras from ternary algebras. J. Math. Phys.20, 1977 (1979) · Zbl 0412.17004 · doi:10.1063/1.524309
[23] Günaydin M.: Proceedings of the 8th Int. Colloq. on Group Theoretical Methods. Ann. Israel Phys. Soc.3, 279 (1980)
[24] Meyberg, K.: Math. Zeitschrift115, 58 (1970) · doi:10.1007/BF01109749
[25] Wolf, J. A.: J. Math. Mech.13, 489 (1964)
[26] Loos, O.: Bounded symmetric domains and Jordan pairs. Univ. of California (1977)
[27] This possibility has arisen out of discussions with I. Bars
[28] Schmid, W.: Proceedings of the International Congress of mathematicians, Helsinki (1978), Academia Scientiarum Fennica (Helsinki, 1980)
[29] To make this statement definitive one has to check explicitly the integrability properties of the matrix elements for each representation
[30] Freudenthal, H.: Indag. math.6, 81 (1953)
[31] Lemire, F. W., Patera, J.: Convergence number, a generalization of SU(3) triality. J. Math. Phys.21, 2026 (1980) · Zbl 0455.22005 · doi:10.1063/1.524711
[32] Günaydin, M., Gürsey, F. Quark structure and octonions, J. Math. Phys.14, 1651 (1973) · Zbl 0338.17004 · doi:10.1063/1.1666240
[33] Cremmer, E.: in Unification of the fundamental particle interactions. Ferrara, S., Ellis, J. van Nieuwenhuizen, P. (eds.) New York. (Plenum Press, 1980, pp. 137-155; Schwarz, J. H.: N-8 Supergravity in various dimensions and the implications for four dimensions. Phys. Lett.95B, 219 (1980)
[34] Hecht, H., Schmid, W.: Invent. Math.31, 129 (1975) · Zbl 0319.22012 · doi:10.1007/BF01404112
[35] Ellis, J., Gaillard, M. K., Günaydin, M., Zumino, B.: (in preparation)
[36] Gelfand, I. M., Graev, M. I., Vilenkin, N. Y.: Generalized functions, Vol. 5. N. Y.: Academic Press 1968
[37] Pauli, W.: On the conservation of the Lepton charge. Nuovo Cimento6, 204 (1957); Gursey, F.: ?Relation of charge independence and Baryon conservation to Pauli’s transformation.? Nuovo Cimento7, 411 (1958) · Zbl 0077.43101 · doi:10.1007/BF02827771
[38] Feshbach, H., Villars, F.: ?Elementary Relativistic wave Mechanics of Spin 0 and Spin 1/2 Particles.? Rev. Mod. Phys.30, 24 (1958) · Zbl 0082.21905 · doi:10.1103/RevModPhys.30.24
[39] Perelomov, A. M.: Theor. Math. Phys.16, 852 (1973) · doi:10.1007/BF01042423
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.