On the complexity of locating linear facilities in the plane. (English) Zbl 0507.90025


90B05 Inventory, storage, reservoirs
68Q25 Analysis of algorithms and problem complexity
Full Text: DOI


[1] Coffman, E. G., Computer and Job-Shop Scheduling Theory (1976), Wiley: Wiley New York · Zbl 0359.90031
[2] Fowler, R. J.; Paterson, N. S.; Tanimoto, S. L., Optimal packing and covering in the plane are NP-complete, Information Processing Lett., 12, 133-137 (1981) · Zbl 0469.68053
[3] Garey, M. G.; Johnson, D. S., Computers and Intractability: A Guide to the Theory of NP-Completeness (1979), Freeman: Freeman San Francisco · Zbl 0411.68039
[4] Graustein, W. C., Introduction to Higher Geometry (1946), Macmillan: Macmillan New York · Zbl 0139.14701
[5] Masuyama, S.; Ibaraki, T.; Hasegawa, T., The computational complexity of the \(m\)-center problems on the plane, Trans. IECE Japan, E64, 57-64 (1981)
[6] Megiddo, N.; Supowit, K. J., On the complexity of some common geometric location problems (1982), manuscript
[7] N. Megiddo and A. Tamir, “Finding least-distances lines”. SIAM J. Alg. Disc. Meth., to appear.; N. Megiddo and A. Tamir, “Finding least-distances lines”. SIAM J. Alg. Disc. Meth., to appear. · Zbl 0517.05007
[8] Melzac, Z. A., Companion to Concrete Mathematics (1973), Wiley: Wiley New York · Zbl 0254.26003
[9] Papadimitriou, C. H., Worst-case and probabilistic analysis of a geometric location problem, SIAM J. Comput., 10, 542-557 (1981) · Zbl 0461.68078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.