×

Symétrie et forme normale des centres et foyers dégénérés. (French) Zbl 0509.34027


MSC:

34C05 Topological structure of integral curves, singular points, limit cycles of ordinary differential equations
34C20 Transformation and reduction of ordinary differential equations and systems, normal forms
34C15 Nonlinear oscillations and coupled oscillators for ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lyapunov, Stability of Motion pp 123– (1966)
[2] DOI: 10.1016/0022-0396(77)90136-X · Zbl 0346.58002 · doi:10.1016/0022-0396(77)90136-X
[3] Dumortier, Germs of diffeomorphisms in the plane (1975)
[4] Bendixson, Ofv. Kangl. Vetenskaps. Akade 9 pp 635– (1898)
[5] Takens, Comm. Math. Inst. 3 pp 1– (1974)
[6] Takens, Publ. Math. I.H.E.S. 43 pp 47– (1974) · Zbl 0279.58009 · doi:10.1007/BF02684366
[7] Moussu, Astérisque none pp none– (none)
[8] Roussarie, Astérisque 30 pp none– (1975)
[9] DOI: 10.2307/2373435 · Zbl 0159.33303 · doi:10.2307/2373435
[10] Poincaré, J. Math. Pures et Appl 3?7 pp 375– (1881)
[11] Mattel, Ann. Scient. Ec. Norm. Sup. Ser. 13 pp 469– (1980)
[12] Moussu, Ann. Inst. Fourier 26 pp 229– (1976) · doi:10.5802/aif.621
[13] Takens, Ann. Inst. Fourier-Grenoble 23 pp 163– (1973) · Zbl 0266.34046 · doi:10.5802/aif.467
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.