On the flow of a simple fluid in an orthogonal rheometer. (English) Zbl 0513.76002


76A05 Non-Newtonian fluids
Full Text: DOI


[1] Maxwell, B., &R. P. Chartoff, Studies of a polymer melt in an orthogonal rheometer.Trans. Soc. Rheol.9, 41-52 (1965). · doi:10.1122/1.548979
[2] Blyler, L. L., & S. J. Kurtz, Analysis of the Maxwell orthogonal rheometer.J. Appl. Poly. Sci.,11, 127-131.
[3] Bird, R. B., &E. K. Harris, Analysis of steady state shearing and stress relaxation in the Maxwell orthogonal rheometer.A.I. Ch. E. Journ.14, 758-761 (1968). · doi:10.1002/aic.690140515
[4] Huilgol, R. R., On the properties of the motion with constant stretch history occurring in the Maxwell rheometer.Trans. Soc. Rheol.13 513-526 (1969). · doi:10.1122/1.549140
[5] Kearsley, E. A., On the flow induced by a Maxwell-Chartoff rheometer.Jour. of Research of the Natl. Bureau of Standards74c, 19-20 (1970).
[6] Abbot, T. N., &K. Walters, Rheometrical flow systems, Part 2. Theory for the orthogonal rheometer, including an exact solution of the Navier-Stokes equations.J. Fluid. Mech.,40, 205-213 (1970). · Zbl 0184.52102 · doi:10.1017/S0022112070000125
[7] Rajagopal, K. R., &A. S. Gupta, Flow and stability of a second grade fluid between two parallel plates rotating about non-coincident axes.Intl. J. Eng. Science,19, 1401-1409 (1981). · Zbl 0469.76003 · doi:10.1016/0020-7225(81)90037-9
[8] Rajagopal, K. R., The flow of a second order fluid between rotating parallel plates.J. of Non-Newtonian Fluid Mech.,9, 185-190 (1981). · Zbl 0476.76008 · doi:10.1016/0377-0257(87)87015-5
[9] Wang, C.-C., A representation theorem for the constitutive equation of a simple material in motions with constant stretch history.Arch. Rational Mech. Anal.,20, 329-340 (1965). · Zbl 0269.73001
[10] Noll, W., Motions with constant stretch history.Arch. Rational Mech. Anal.,11, 97-105 (1962). · Zbl 0112.18301 · doi:10.1007/BF00253931
[11] Coleman, B. D., Substantially stagnant motions.Trans. Soc. Rheol.,6, 293-300 (1962). · doi:10.1122/1.548928
[12] Coleman, B. D., Kinematical concepts with applications in the mechanics and thermodynamics of incompressible viscoelastic fluids.Arch. Rational Mech. Anal.,9, 273-300 (1962). · Zbl 0109.18001
[13] Huilgol, R. R., A class of motions with constant stretch history.Quart. of Appl. Mathematics,29, 1-15 (1971). · Zbl 0214.25001 · doi:10.1090/qam/99767
[14] Rivlin, R. S., &J. L. Ericksen, Stress-deformation relations for isotropic materials.J. Rational Mech. Anal.,4, 323-425 (1955). · Zbl 0064.42004
[15] Truesdell, C.; Noll, W., The non-linear field theories of mechanics, No. III/3 (1965), Berlin-Heidelberg-New York · Zbl 0779.73004
[16] Berker, R., A new solution of the Navier-Stokes equation for the motion of a fluid contained between two parallel planes rotating about the same axis.Archiwum Mechaniki Stosowanej,31, 265-280 (1979). · Zbl 0415.76026
[17] Rajagopal, K. R., & A. S. Gupta, Flow and stability of second grade fluids between two parallel rotating plates.Archiwum Mechaniki Stosowanej, In Press. · Zbl 0501.76006
[18] Berker, R., Intégration des équations du mouvement d’un fluide visqueux, incompressible,Handbuch der Physik, VIII/2, Berlin-Göttingen-Heidelberg (1963).
[19] Drouot, R., Sur un cas d’intégration des équations du mouvement d’un fluide incompressible du deuxième ordre,C. R. Acad. Sc. Paris, 265A, 300-304 (1967). · Zbl 0153.28401
[20] Berker, R., An exact solution of the Navier-Stokes equation, the vortex with curvilinear axis,Intl. J. Eng. Science,20, 217-230 (1982). · Zbl 0487.76039 · doi:10.1016/0020-7225(82)90017-9
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.