Uniqueness of positive solutions of semilinear equations in \(R^ n\). (English) Zbl 0516.35031


35J65 Nonlinear boundary value problems for linear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
Full Text: DOI


[1] Berestycki, H., & P.-L. Lions, Existence d’ondes solitaires dans les problèmes nonlineaires du type Klein-Gordon, Comptes Rendus, Paris, Serie A, 287, 503–506 (1972). · Zbl 0391.35055
[2] Berestycki, H., & P. L. Lions, Existence of a ground state in nonlinear equations of the type Klein-Gordon, in Variational Inequalities. (Cottle, Gianesi and J.-L. Lions, editors). New York: J. Wiley, 1980. · Zbl 0707.35143
[3] Berestycki, H., Lions, P. L., & L. A. Peletier, An ODE approach to the existence of positive solutions for semilinear problems in \(\mathbb{R}\)n, Indiana University Math. Jour. 30, 141–157 (1981). · Zbl 0522.35036
[4] Bongiorno, V., Scriven, L. E., & H. T. Davis, Molecular theory of fluid interfaces. J. Colloid and Interface Science, 57, 462–475 (1967). See also J. Chem. Physics, 63, 5040–5045 (1978).
[5] Brezis, H., & L. Veron, Removable singularities for some nonlinear elliptic equations. Arch. Rational Mech. Analysis 75, 1–6 (1980). · Zbl 0459.35032
[6] Coffman, C. V., Uniqueness of the ground state so · Zbl 0249.35029
[7] Fife, P. C., Mathematical aspects of reacting and diffusing systems, Lecture notes in Biomathematics 28. Berlin Heidelberg New York: Springer 1979.
[8] Fisher, R. A., The wave of advance of advantageous genes, Jour. of Eugenics 7, 355–369 (1937). · JFM 63.1111.04
[9] Gidas, B., Ni, W.-M., & L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in \(\mathbb{R}\)n. Commun. Math. Phys. 68, 209–243 (1979). · Zbl 0425.35020
[10] Jones, C. K. R. T., Spherically symmetric waves of a reaction-diffusion equation, MRC Technical Summary Report #2046, 1979.
[11] McLeod, K., & J. Serrin, Uniqueness of the ground state solution for {\(\Delta\)}u + f(u) = 0. Proc. Nat. Acad. Sci. USA, 78, 6592–6595 (1981). · Zbl 0474.35047
[12] Serrin, J., Phase transitions and interfacial layers for van der Waals fluids, in Recent Methods in Nonlinear Analysis and Applications: Proceedings of the Fourth International Meeting of SAFA, eds. Canfora, A., Rionero, F., Sbordone, C. & Trombetti, G. (Liquori Editore, Naples, Italy), pp. 169–175 (1980).
[13] Van Der Waals, J. D., & R. Kohnstamm, Lehrbuch der Thermodynamik, vol. 1. Leipzig, 1908.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.