×

Interpolation on uniform meshes by the translates of one function and related attenuation factors. (English) Zbl 0517.42004


MSC:

42A10 Trigonometric approximation
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Stefan Bergman, The kernel function and conformal mapping, Second, revised edition, American Mathematical Society, Providence, R.I., 1970. Mathematical Surveys, No. V. · Zbl 0473.30006
[2] L. Collatz & W. Quade, ”Zur Interpolationstheorie der reellen periodischen Funktionen,” S.-B. Preuss. Akad. Wiss. Phys.-Math. Kl., v. 30, 1938, pp. 383-429. · JFM 65.0543.01
[3] Hartmut Ehlich, Untersuchungen zur numerischen Fourieranalyse, Math. Z. 91 (1966), 380 – 420 (German). · Zbl 0143.38902
[4] Walter Gautschi, Attenuation factors in practical Fourier analysis, Numer. Math. 18 (1971/72), 373 – 400. · Zbl 0231.65101
[5] Michael Golomb, Approximation by periodic spline interpolants on uniform meshes, J. Approximation Theory 1 (1968), 26 – 65. · Zbl 0185.30901
[6] Michael Golomb, Interpolation operators as optimal recovery schemes for classes of analytic functions, Optimal estimation in approximation theory (Proc. Internat. Sympos., Freudenstadt, 1976) Plenum, New York, 1977, pp. 93 – 138.
[7] Peter Henrici, Fast Fourier methods in computational complex analysis, SIAM Rev. 21 (1979), no. 4, 481 – 527. · Zbl 0416.65022
[8] W. Knauff and R. Kreß, Optimale Approximation linearer Funktionale auf periodischen Funktionen, Numer. Math. 22 (1973/74), 187 – 205 (German, with English summary). · Zbl 0269.65012
[9] Rainer Kreß, Zur numerischen Integration periodischer Funktionen nach der Rechteckregel, Numer. Math. 20 (1972/73), 87 – 92 (German, with English summary). · Zbl 0231.65026
[10] Herbert Meschkowski, Reihenentwicklungen in der mathematischen Physik, Bibliographisches Institut, Mannheim, 1963 (German). · Zbl 0121.29702
[11] Arnold Schönhage, Approximationstheorie, Walter de Gruyter & Co., Berlin-New York, 1971 (German). · Zbl 0212.41501
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.