Une méthode locale pour l’existence de solutions positives de problèmes semi-linéaires elliptiques dans \(R^ n\). (French) Zbl 0518.35034


35J60 Nonlinear elliptic equations
35B45 A priori estimates in context of PDEs
35A35 Theoretical approximation in context of PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B20 Perturbations in context of PDEs
Full Text: DOI


[1] Agmon, S.; Douglis, A.; Nirenberg, L., Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., 12, 623-727 (1959) · Zbl 0093.10401
[2] Amann, H., Existence of multiple solutions for nonlinear elliptic boundary value problems, Indiana Univ. Math J., 21, 925-935 (1975) · Zbl 0222.35023
[3] Amann, H., Nonlinear operators in ordered Banach spaces and some applications to nonlinear boundary value problems, inNonlinear Operators and the Calculus of Variations (1975), New York: Springer Verlag, New York
[4] Amann, H., Existence and multiplicity theorems for semi-linear elliptic boundary value problems, Math. Z., 150, 281-295 (1976) · Zbl 0331.35026
[5] Ambrosetti, A.; Rabinowitz, P. H., Dual variational methods in critical point theory and applications, J. Functional Analysis, 14, 349-381 (1973) · Zbl 0273.49063
[6] Anderson, D.; Derrick, G., Stability of time dependent particle-like solutions in nonlinear field theories, J. Math. Phys., 11, 1336-1346 (1970)
[7] Berger, M. S., On the existence and structure of stationary states for a nonlinear Klein-Gordon equation, J. Functional Analysis, 9, 249-261 (1972) · Zbl 0224.35061
[8] Berestycki, H.; Lions, P. L., Existence d’ondes solitaires dans des problèmes non-linéaires du type Klein-Gordon, C. R. Acad. Sci. Paris Sér. A, 287, 503-506 (1978) · Zbl 0391.35055
[9] Berestycki, H.; Lions, P. L.; Cottle; Gianessi; Lions, Existence of a ground state in nonlinear equations of the type Klein-Gordon, inVariational Inequalities (1980), New York: Wiley, New York · Zbl 0707.35143
[10] H. Berestycki et P. L. Lions,Existence d’ondes solitaires dans des problèmes non-linéaires du type-Gordon (2ème partie). C. R. Acad. Sci. Paris Sér. A288 (1979), Article détaillé à paraître. · Zbl 0397.35024
[11] Berestycki, H.; Lions, P. L.; Bardos; Lasry; Schatzman, Some applications of the method of sub- and supersolutions, inBifurcation and Nonlinear Eigenvalue Problems (1979), New York: Springer Verlag, New York
[12] H. Berestycki, P. L. Lions et L. A. Peletier,An O.D.E. approach to the existence of positive solutions for semi-linear problems, inR^N, à paraître. Indiana Univ. Math. J. (1981).
[13] Brezis, H.; Turner, R. E. L., On a class of superlinear elliptic problems, Commun. Partial. Differ. Equ., 2, 601-614 (1977) · Zbl 0358.35032
[14] M. Bristeau et R. Glowinski,Rapport I.N.R.I.A. (Rocquencourt, France), à paraître; voir également livre de R. Glowinski, à paraître.
[15] Coffman, C. V., Uniqueness of the ground state solution for δu−u+u^3=0 and a variational characterization of other solutions, Arch. Rational Mech. Anal., 46, 81-95 (1972) · Zbl 0249.35029
[16] Gidas, B.; Ni, Wei-Ming; Nirenberg, L., Symmetry and related properties via the maximum principle, Comm. Math. Phys., 68, 209-243 (1979) · Zbl 0425.35020
[17] Kato, T., Growth properties of solutions of the reduced wave equation with a variable coefficient, Comm. Pure Appl. Math., 19, 403-425 (1959) · Zbl 0091.09502
[18] Leray, J.; Schauder, J., Topologie et équations fonctionnelles, Ann. Sci. École Norm. Sup., 51, 45-78 (1934) · Zbl 0009.07301
[19] Nirenberg, L., Topics in Nonlinear Functional Analysis (1974), New York: New York University, New York · Zbl 0286.47037
[20] Nussbaum, R., Positive solutions of nonlinear elliptic boundary value problems, J. Math. Anal. Appl., 51, 461-482 (1975) · Zbl 0304.35047
[21] Pohozaev, S. I., Eigenfunctions of the equation Δu+λf(u)=0, Sov. Math. Dokl., 5, 1408-1411 (1965) · Zbl 0141.30202
[22] Rabinowitz, P. H., Variational methods for nonlinear elliptic eigenvalue problems, Indiana Univ. Math. J., 23, 729-754 (1974) · Zbl 0278.35040
[23] Rabinowitz, P. H., Paris of positive solutions of nonlinear elliptic boundary value problems, Indiana Univ. Math. J., 23, 173-186 (1974)
[24] A. F. Rañada et L. Vásquez,Kinks and the Heisenberg uncertainty principle, to appear in Phys. Rev.
[25] Stampacchia, G., Le problème de Dirichlet pour les équations du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15, 189-257 (1965) · Zbl 0151.15401
[26] Strauss, W., Existence of solitary waves in higher dimensions, Comm. Math. Phys., 55, 149-162 (1977) · Zbl 0356.35028
[27] Vásquez, L., Elementary length in nonlinear classical fields, Lett. Nuovo Cimento, 19, 37-40 (1977)
[28] Vásquez, L., Interaction and stability of localized solutions in a classical nonlinear scalar field theory, J. Math. Phys., 19, 387-389 (1978)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.