×

Stabilization of solutions of a degenerate nonlinear diffusion problem. (English) Zbl 0518.35050


MSC:

35K55 Nonlinear parabolic equations
35B40 Asymptotic behavior of solutions to PDEs
35B35 Stability in context of PDEs
35A05 General existence and uniqueness theorems (PDE) (MSC2000)
35B65 Smoothness and regularity of solutions to PDEs
35K65 Degenerate parabolic equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Barbu, V., Nonlinear Semigroups and Differential Equations in Banach Spaces (1976), Noordhoff International Publishing Co: Noordhoff International Publishing Co Leyden · Zbl 0328.47035
[2] Bear, J., Dynamics of fluids in porous media (1972), American Elsevier: American Elsevier New York · Zbl 1191.76001
[3] Bénilan PhSur un probléme d’evolution non monotone dans\(L^2\); Bénilan PhSur un probléme d’evolution non monotone dans\(L^2\)
[4] Bénilan, Ph.; Crandall, M. G., Regularizing effects of homogeneous evolution equations, (Mathematics Research Center TSR #2076 (1980), University of Wisconsin: University of Wisconsin Madison) · Zbl 0556.35067
[5] Brézis, H., Monotonicity methods in Hilbert spaces and some applications to nonlinear partial differential equations, (Zarantonello, E., Contributions to Nonlinear Functional Analysis (1971), Academic Press: Academic Press New York) · Zbl 0278.47033
[6] Brézis, H.; Crandall, M. G., Uniqueness of solutions of the initial-value problem for \(u_t\) − \( δϕ (u) = 0\), J. Math. pures appl., 58, 153-163 (1979) · Zbl 0408.35054
[7] Chafee, N.; Infante, E., A bifurcation problem for a nonlinear parabolic equation, Applicable Analysis, 4, 17-37 (1974) · Zbl 0296.35046
[8] Crandall, M. G., An introduction to evolution governed by accretive operators, (Cesari, L.; Hale, J.; LaSalle, J., Dynamical Systems—An International Symposium (1976), Academic Press: Academic Press New York), 131-165 · Zbl 0339.35049
[9] Crandall, M. G.; Pierre, M., Regularizing effects for \(u_tδ\) ≡ \(ϕ(u)\), (Mathematics Research Center TSR #2166 (1981), University of Wisconsin: University of Wisconsin Madison)
[10] Crandall, M. G.; Pierre, M., Regularizing effects for \(u_t = Aϕ(u)\) in \(L^1\), (Mathematics Research Center TSR #2187 (1981), University of Wisconsin: University of Wisconsin Madison)
[11] Evans, L. C., Differentiability of a nonlinear semigroup in \(L^1\), J. math. Analysis Appl., 60, 703-715 (1977) · Zbl 0363.47032
[12] Evans, L. C., Application of nonlinear semigroup theory to certain partial differential equations, (Crandall, M. G., Nonlinear Evolution Equations (1978), Academic Press: Academic Press New York) · Zbl 0471.35039
[13] Gurtin, M. E.; MacCamy, On the diffusion of biological populations, Mathematical Biosciences, 33, 35-49 (1977) · Zbl 0362.92007
[14] Kamin, S., Source-type solutions for equations of nonstationary filtration, J. math. Analysis Appl., 64, 263-276 (1978) · Zbl 0387.76083
[15] Ladyzenskaja, O. A.; Solonnikov, V. A.; Ural‘ceva, N. N., Linear and Quasilinear Equations of Parabolic Type, (Transl. of Math. Monographs, Vol. 23 (1968), American Mathematical Society: American Mathematical Society Providence) · Zbl 0174.15403
[16] Okubo, A., Diffusion and Ecological Problems: Mathematical Models, (Biomathematics, Vol. 10 (1980), Springer: Springer Berlin-Heidelberg-New York) · Zbl 0422.92025
[17] Pierre, M., Uniqueness of the solutions of \(u_t\) − \( δϕ (u) = 0\) with initial datum a measure., (Mathematics Research Center TSR #2171 (1981), University of Wisconsin: University of Wisconsin Madison)
[18] Smoller, J.; Wasserman, J., Global bifurcations of steady-state solutions, J. diff. Eqns., 39, 269-290 (1981) · Zbl 0425.34028
[19] Vol“pert, A. I.; Hudjaev, S. I., Cauchy”s problem for degenerate second order quasilinear parabolic equations, Math. USSR Sbornik, 7, 365-387 (1969) · Zbl 0191.11603
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.