×

Distributed asynchronous computation of fixed points. (English) Zbl 0521.90089


MSC:

90C30 Nonlinear programming
65H10 Numerical computation of solutions to systems of equations
49M37 Numerical methods based on nonlinear programming
65F10 Iterative numerical methods for linear systems
65K05 Numerical mathematical programming methods
54H25 Fixed-point and coincidence theorems (topological aspects)
90C35 Programming involving graphs or networks
90B10 Deterministic network models in operations research
90C39 Dynamic programming
91B50 General equilibrium theory
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] G.M. Baudet, ”Asynchronous iterative methods for multiprocessors”,Journal of the ACM 2 (1978) 226–244. · Zbl 0372.68015
[2] D.P. Bertsekas,Dynamic programming and stochastic control (Academic Press, New York, 1976). · Zbl 0549.93064
[3] D.P. Bertsekas and S.E. Shreve,Stochastic optimal control: The discrete time case (Academic Press, New York, 1978). · Zbl 0471.93002
[4] D.P. Bertsekas, ”Distributed dynamic programming”,IEEE Transactions on Automatic Control AC-27 (1982) 610–616. · Zbl 0493.49030
[5] D. Chazan and W. Miranker, ”Chaotic relaxation”,Linear Algebra and Its Applications 2 (1969) 199–222. · Zbl 0225.65043
[6] J.W. Daniel,The approximate minimization of functionals (Prentice Hall, Englewood Cliffs, NJ, 1971). · Zbl 0223.65014
[7] E.L. Lawler,Combinatorial optimization: Networks and matroids (Holt, Rinehart, and Winston, New York, 1976). · Zbl 0413.90040
[8] D.G. Luenberger,Introduction to linear and nonlinear programming (Addison-Wesley, Reading, MA, 1973). · Zbl 0297.90044
[9] J. McQuillan, G. Falk and I. Richer, ”A review of the development and performance of the ARPANET routing algorithm”,IEEE Transactions on Communications COM-26 (1978) 1802–1811.
[10] J. C. Miellou, ”Itérations chaotiques a retards études de la convergence dans le case d’espaces partiellment ordonnés”,Comptes Rendus de l’Académie des Sciences, Paris, Série A 278 (1974) 957–960.
[11] J.M. Ortega and W.C. Rheinboldt,Iterative solution of nonlinear equations in several variables (Academic Press, New York, 1970). · Zbl 0241.65046
[12] C.H. Papadimitriou and K. Steiglitz,Combinatorial optimization: Algorithms and complexity (Prentice Hall, Englewood Cliffs, NJ, 1982). · Zbl 0503.90060
[13] E. Polak,Computational methods in optimization: A unified approach (Academic Press, New York, 1971). · Zbl 0257.90055
[14] B.J. Poljak, ”Convergence and convergence rate of iterative stochastic algorithms”,Automation and Remote Control 12 (1982) 83–94.
[15] H.L. Royden,Real analysis (MacMillan, New York, 1963). · Zbl 0121.05501
[16] W.I. Zangwill,Nonlinear programming (Prentice Hall, Englewood Cliffs, NJ, 1969). · Zbl 0191.49101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.